引言
检索增强生成(RAG)把信息检索与生成式模型结合,在问答、摘要及其他 NLP 任务中极具威力。实现 RAG 最常用的两大框架是 LangChain 与 LlamaIndex。二者都可处理文档摄取、切分、索引,并把各步骤串联成流畅的 RAG 工作流。但哪一个更契合你的项目?本文将围绕 RAG 的四大核心组件——加载器(Loaders)、切分器(Splitters)、索引(Indexing)与链(Chains)——逐层比较 LangChain 与 LlamaIndex,并在每一步给出代码示例。
https://zhuanlan.zhihu.com/p/1914345414183854144
https://zhuanlan.zhihu.com/p/1914345414183854144
LangChain 关键组件
LangChain 围绕以下模块构建:
提示(Prompts)
提示是给予语言模型的指令,用以引导回答。LangChain 提供标准化接口来创建与管理提示,便于跨模型、跨场景复用与定制。
模型(Models)
LangChain 为多家大模型(如 OpenAI GPT-4o、Anthropic Claude、Cohere 等)提供统一接口,抽象掉不同模型的差异,实现无缝切换。
记忆(Memory)
LangChain 的亮点之一是其记忆管理能力。与普通 LLM 独立处理每条查询不同,LangChain 可保存先前交互信息,实现上下文连贯的对话。它提供多种记忆实现,可保存完整对话历史,也可通过摘要旧信息、保留近期信息的方式工作。
链(Chains)
链是一系列操作,每一步的输出作为下一步的输入。LangChain 提供健壮接口来构建与管理链,并附带大量可复用组件。这种模块化方法可创建集成多种工具与多次 LLM 调用的复杂工作流。
智能体(Agents)
智能体根据输入判断并执行动作。它们利用 LLM 决定动作顺序,并调用各种工具完成任务。LangChain 提供多种预制智能体,可按需定制。
LangChain 的强项
• 需要保留对话上下文的聊天机器人、自动客服等场景
• 通过提示让 LLM 执行文本生成、翻译、问答等任务
• 提供访问多源多格式文档的加载器,丰富 LLM 知识库
• 使用文本嵌入模型生成语义嵌入,支持 50 余种向量存储方案实现内容发现与检索
• 智能体与工具包:智能体依据自然语言指令行动,可动态调用链。
LlamaIndex 关键组件
L


最低0.47元/天 解锁文章
485

被折叠的 条评论
为什么被折叠?



