需要源码请点赞关注收藏后评论区留言私信~~~
线性回归是用一条直线或者一个平面(超平面)去近似原始样本在空间中的分布。线性回归的局限性是只能应用于存在线性关系的数据中,但是在实际生活中,很多数据之间是非线性关系,虽然也可以用线性回归拟合非线性回归,但是效果会变差,这时候就需要对线性回归模型进行改进,使之能够拟合非线性数据
非线性回归是用一条曲线或者曲面去逼近原始样本在空间中的分布,它“贴近”原始分布的能力一般较线性回归更强
线性回归的局限性是只能应用于存在线性关系的数据中,但是在实际生活中,很多数据之间是非线性关系,虽然也可以用线性回归拟合非线性回归,但是效果会变差,这时候就需要对线性回归模型进行改进,使之能够拟合非线性数据
多项式回归
多项式回归(Polynomial Regression)是研究一个因变量与一个或多个自变量间多项式关系的回归分析方法。多项式回归模型是非线性回归模型中的一种。由泰勒级数可知,在某点附近,如果函数n次可导,那么它可以用一个n次的多项式来近似
研究一个因变量与一个或多个自变量间多项式的回归分析方法,称为多项式回归(Polynomial Regression)。如果自变量只有一个时,称为一元多项式回归;如果自变量有多个时,称为多元多项式回归。在一元回归分析中,如果因变量y与自变量x的关系为非线性的,但又找不到适当的函数曲线来拟合,则可以采用一元多项式回归。在这种回归技术中,最佳拟合线不是直线,而是一个用于拟合数据点的曲线
多项式回