组合数学第三次作业

本文解析了组合数学中的几个典型问题,包括如何通过特定条件称量硬币、构造顶点覆盖集合的概率方法、独立集的存在性证明等。文章利用概率论和组合分析技巧,给出了解决这些问题的具体步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

组合数学第三次作业
1.
(1) we choose xi denotes the ith coin,and Ti={xi}for i in {1,..n}
and according to an arbitrary subset Ti can be uniquely determined by the cardinalities|SiT|,1im.
so we can weight every coin.
(2)

mnlog2(n+1)

is equvient with
(n+1)m>2n

the number of Ti is 2n, and the number of Si is (n+1)m
and it’s easy to see that ||Si||>||Ti||

2.
(1)
let T is the set of vertex which for every vetex vi in V, we have an independent probability p to put vi into T
and W is the set of vertex vj,vjT,and every neighbour of vjT
So,

E[T]=np

E[W]=n(1p)d+1

the dominating set
D=TW

D<np+n(1p)d+1=H(p)

whenH(p)=0,p=ln(d+1)d+1
and we have
D<n(1+ln(d+1))d+1

3.

4.let Aijrepresents the event thatvi,vj are adjacent,and vi,vjare chosen in the independent set.

PAij=1k2

and d=2
According to Lovász local lemma,we have to prove
ep(d+1)<1

e1k22<1

for any k>3, it holds.

5.
let Ae denotes the bed event that e is a monochromatic hyper edge .

PAe=21k

the maximum degree of the dependency graph for the events A1,A2,...,An is d,
d=2k

According to Lovász local lemma
we have to prove

ep(d+1)<1
for k>10
ep(d+1)<e21k2k<1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值