YOLOv8改进 | Conv篇 | 利用FasterBlock二次创新C2f提出一种全新的结构(全网独家首发,参数量下降70W)

本文介绍了使用FasterNet的FasterBlock优化ResNet网络,通过部分卷积(PConv)减少计算量和内存访问,提高运行速度和准确性。详细讲解了FasterBlock的基本原理、核心代码及添加机制,提供了yaml文件和训练记录,参数量下降70W,适用于目标检测等视觉任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文给大家带来的改进机制是利用FasterNet的FasterBlock改进特征提取网络,将其用来改进ResNet网络,其旨在提高计算速度而不牺牲准确性,特别是在视觉任务中。它通过一种称为部分卷积(PConv)的新技术来减少冗余计算和内存访问。这种方法使得FasterNet在多种设备上运行速度比其他网络快得多,同时在各种视觉任务中保持高准确率,同时本文的内容为我独家创新,全网仅此一份,同时本文的改进机制参数量下降70W,V8n的计算量为6.5GFLOPs

欢迎大家订阅我的专栏一起学习YOLO!  

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备    

目录

一、本文介绍

二、FasterNet原理

2.1 FasterNet的基本原理

2.2 部分卷积

2.3 加速神经网络

三、FasterBlock的核心代码

四、 手把手教你添加FasterBlock机制 

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、FasterBlock的yaml文件和运行记录

5.1 FasterBlock的yaml文件

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值