YOLOv5改进 | 融合改进篇 | CCFM + Dyhead完美融合突破极限涨点 (全网独家首发)

本文介绍了一种YOLOv5改进方法,通过融合CCFM(RT-DETR的Neck结构)与Dyhead(动态头)实现精度提升。Dyhead的核心思想是统一尺度、空间和任务感知,通过三种注意力机制提升检测性能。文章详细讲解了Dyhead的框架原理和核心代码,并指导读者如何添加Dyhead检测头。此外,提供了两种yaml配置文件供用户选择,实现了轻量化和性能之间的平衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 一、本文改进

本文给大家带来的改进机制是CCFM配合Dyhead检测头实现融合涨点,这个结构配合在一起只能说是完美的融合,看过我之前的检测头篇的读者都知道Dyhead官方版本支持的输入通道数是需要保持一致的,但是CCFM作为RT-DETR的Neck结构其输出通道数就是一致的,所以将这两种模块结合起来可以说是完美融合,我也将其进行了实验,在我的数据上已经做到了完美涨点! ,我之前发的Damo-YOLO和CCFM-SENetV2均有人和我反应已经涨点了,均有聊天记录证明,所以想要发文章的读者可以趁早入手本专栏,快人一步,同时本融合机制参数量也有大幅度下降,相较于原先下降了百分之如下,可以说既轻量又提点。

(这里说一下为啥多发CCFM的融合因为其是今年最近新出的Neck结构非常轻量化,同时精度还不低结构还简单,后面我也会出一些分割的检测头融合改进,本文提供两种yaml文件,一种轻量化精度略微上涨,一种参数量大一点但是也是轻量化一些,精度更高)

欢迎大家订阅我的专栏一起学习YOLO!  

专栏目录:YOLOv5改进有效涨点目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

目录

 一、本文改进

二、Dyhead的框架原理

2.1  DynamicHead的核心思想

2.2  DynamicHead的框架图

2.3  DynamicHead的组成构建

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值