import os
import time
from math import ceil
import onnxruntime
import numpy as np
import cv2
import argparse
import argparse
import numpy as np
from data import cfg_mnet, cfg_peleenet
from utils.nms.py_cpu_nms import py_cpu_nms
from math import ceil
from itertools import product as product
#sigmoid函数
def sigmoid(x):
s = 1 / (1 + np.exp(-1*x))
return s
def softmax(x, axis=1):
# 计算每行的最大值
row_max = x.max(axis=axis)
# 每行元素都需要减去对应的最大值,否则求exp(x)会溢出,导致inf情况
row_max = row_max.reshape(-1, 1)
x = x - row_max
x_exp = np.exp(x)
x_sum = np.sum(x_exp, axis=axis, keepdims=True)
s = x_exp / x_sum
return s
def decode(loc, priors, variances):
"""D
onnx retina人脸检测
于 2020-02-25 23:16:10 首次发布