机器学习之朴素贝叶斯Naïve Bayes (二) scikit-learn算法库

本文详细介绍了scikit-learn中的朴素贝叶斯算法实现,包括GaussianNB、MultinomialNB和BernoulliNB三个分类器。探讨了它们的应用场景、参数设置及如何进行预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:http://www.cnblogs.com/pinard/p/6074222.html


一、scikit-learn 朴素贝叶斯类库概述

        朴素贝叶斯是一类比较简单的算法,scikit-learn中朴素贝叶斯类库的使用也比较简单。相对于决策树、KNN之类的算法,朴素贝叶斯需要关注的参数是比较少的,这样也比较容易掌握。在scikit-learn中,一共有三个朴素贝叶斯的分类算法类,分别是GaussianNB,MultinomialNB和BernoulliNB。其中GaussianNB就是先验为高斯分布的朴素贝叶斯,MultinomialNB就是先验为多项式分布的朴素贝叶斯,而BernoulliNB就是先验为伯努利分布的朴素贝叶斯。

        这三个类适用的分类场景各不相同,一般来说,如果样本特征的分布大部分是连续值,使用GaussianNB会比较好;如果样本特征的分布大部分是多元离散值,使用MultinomialNB比较合适;如果样本特征是二元离散值或者很稀疏的多元离散值,应该使用BernoulliNB。

二、GaussianNB类使用总结

        GaussianNB假设特征的先验概率为正态分布,即如下式:


        其中 分别表示类别为yk的样本中第i维特征的均值和方差,需要从训练集中估计。

        GaussianNB类的主要参数仅有一个,即先验概率priors ,对应Y的各个类别的先验概率。这个值默认不给出,如果不给出,此时。其中N为训练集样本总数量,Nyk为输出为第k类别的训练集样本数。如果给出的话就以priors 为准。

        在使用GaussianNB的fit方法拟合数据后,可以进行预测。此时预测有三种方法,包括predict、predict_log_proba和predict_proba。

        predict方法就是最常用的预测方法,直接给出测试集的预测类别输出。

        predict_proba则不同,它会给出测试集样本在各个类别上预测的概率。容易理解,predict_proba预测出的各个类别概率里的最大值对应的类别,也就是predict方法得到类别。

        predict_log_proba和predict_proba类似,它会给出测试集样本在各个类别上预测的概率的一个对数转化。转化后predict_log_proba预测出的各个类别对数概率里的最大值对应的类别,也就是predict方法得到类别。

        下面给一个具体的例子,代码如下:

import numpy as np
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
Y = np.array([1, 1, 1, 2, 2, 2])
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
#拟合数据
clf.fit(X, Y)
print "==Predict result by predict=="
print(clf.predict([[-0.8, -1]]))
print "==Predict result by predict_proba=="
print(clf.predict_proba([[-0.8, -1]]))
print "==Predict result by predict_log_proba=="
print(clf.predict_log_proba([[-0.8, -1]]))

结果如下:
==Predict result by predict==
[1]
==Predict result by predict_proba==
[[  9.99999949e-01   5.05653254e-08]]
==Predict result by predict_log_proba==
[[ -5.05653266e-08  -1.67999998e+01]]
        从上面的结果可以看出,测试样本[-0.8,-1]的类别预测为类别1。具体的测试样本[-0.8,-1]被预测为1的概率为9.99999949e-01 ,远远大于预测为2的概率5.05653254e-08。这也是为什么最终的预测结果为1的原因了。

        此外,GaussianNB一个重要的功能是有 partial_fit方法,这个方法一般用在训练集数据量非常大、一次不能全部载入内存的时候。这时可以把训练集分成若干等分,重复调用partial_fit来一步步的学习训练集,非常方便。后面讲到的MultinomialNB和BernoulliNB也有类似的功能。

三、MultinomialNB类使用总结

        MultinomialNB假设特征的先验概率为多项式分布,即如下式:


        其中,是第yk个类别的第i维特征取值为xi的条件概率。Nyk是训练集中输出为第yk类的样本个数。λ为一个大于0的常数,常常取为1,即拉普拉斯平滑。也可以取其他值。

        MultinomialNB参数比GaussianNB多,但是一共也只有三个。其中,参数alpha即为上面的常数λ,如果没有特别的需要,用默认的1即可。如果发现拟合的不好,需要调优时,可以选择稍大于1或者稍小于1的数。布尔参数fit_prior表示是否要考虑先验概率,如果是false,则所有的样本类别输出都有相同的类别先验概率。否则可以自己用第三个参数class_prior输入先验概率,或者不输入第三个参数class_prior让MultinomialNB自己从训练集样本来计算先验概率,此时的先验概率为。其中N为训练集样本总数量,Nyk为输出为第yk类别的训练集样本数。总结如下:

fit_priorclass_priot最终先验概率
false填或不填均可P(yk)=1/k
true不填P(yk)=Nyk/N
trueP(yk)-class_prior
        在使用MultinomialNB的fit方法或者partial_fit方法拟合数据后,可以进行预测。此时预测有三种方法,包括predict,predict_log_proba和predict_proba。由于方法和GaussianNB完全一样,这里就不累述了。

四、BernoulliNB类使用总结

        BernoulliNB假设特征的先验概率为二元伯努利分布,即如下式:

        此时xi只能取值0或者1。

        BernoulliNB一共有四个参数,其中三个参数的名字和意义和MultinomialNB完全相同,唯一增加的一个参数是binarize。这个参数主要是用来帮BernoulliNB处理二项分布的,可以是数值或者不输入。如果不输入,则BernoulliNB认为每个数据特征都已经是二元的;否则的话,小于binarize的会归为一类,大于binarize的会归为另外一类。



    在使用BernoulliNB的fit或者partial_fit方法拟合数据后,我们可以进行预测。此时预测有三种方法,包括predict,predict_log_proba和predict_proba。由于方法和GaussianNB完全一样,这里就不累述了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值