#coding:utf-8
import numpy as np
#定义激活函数和他们的导数
def tanh(x):
return np.tanh(x)
def tanh_deriv(x):
return 1.0 - np.tanh(x)**2
def logistic(x):
return 1/(1 + np.exp(-x))
def logistic_derivative(x):
return logistic(x)*(1-logistic(x))
#定义NeuralNetwork 神经网络算法
class NeuralNetwork:
#初始化,layes表示的是一个list,eg[10,10,3]表示第一层10个神经元,第二层10个神经元,第三层3个神经元
def __init__(self, layers, activation='tanh'):
"""
:param layers: A list containing the number of units in each layer.
Should be at least two values
:param activation: The activation function to be used. Can be
"logistic" or "tanh"
"""
if activation == 'logistic':
self.activation = logistic
self.activation_deriv = logistic_derivative
elif activation == 'tanh':
self.activation = tanh
self.activation_deriv = tanh_deriv
# 随机初始化权重
self.weights = []
#循环从1开始,相当于以第二层为基准,进行权重的初始化
for i in range(1, len(layers) - 1):
#对当前神经节点的前驱赋值
self.weights.append((2*np.random.random((layers[i - 1] + 1, layers[i] + 1))-1)*0.25)
#对当前神经节点的后继赋值
self.weights.append((2*np.random.random((layers[i] + 1, layers[i + 1]))-1)*0.25)
#训练函数,X矩阵,每行是一个实例 ,y是每个实例对应的结果,learning_rate 学习率,
# epochs,表示抽样的方法对神经网络进行更新的最大次数
def fit(self, X, y, learning_rate=0.1, epochs=10000):
X = np.atleast_2d(X) #确定X至少是二维的数据
temp = np.ones([X.shape[0], X.shape[1]+1]) #初始化矩阵
temp[:, 0:-1] = X # adding the bias unit to the input layer
X = temp
y = np.array(y) #把list转换成array的形式
for k in range(epochs):
#随机选取一行,对神经网络进行更新
i = np.random.randint(X.shape[0])
a = [X[i]]
#完成所有正向的更新
for l in range(len(self.weights)):
a.append(self.activation(np.dot(a[l], self.weights[l])))
#误差反向传播
error = y[i] - a[-1]
deltas = [error * self.activation_deriv(a[-1])]
if k%1000 == 0:
print(k,'...',error*error*100)
#开始反向计算误差,更新权重
for l in range(len(a) - 2, 0, -1): # we need to begin at the second to last layer
deltas.append(deltas[-1].dot(self.weights[l].T)*self.activation_deriv(a[l]))
deltas.reverse()
for i in range(len(self.weights)):
layer = np.atleast_2d(a[i])
delta = np.atleast_2d(deltas[i])
self.weights[i] += learning_rate * layer.T.dot(delta)
#预测函数
def predict(self, x):
x = np.array(x)
temp = np.ones(x.shape[0]+1)
temp[0:-1] = x
a = temp
for l in range(0, len(self.weights)):
a = self.activation(np.dot(a, self.weights[l]))
return a
以上代码仅仅是对 BP 做一个简单地演示,离可用的神经网络还有千里之遥,下面用它来演示 XOR 的学习:
nn = NeuralNetwork([2,2,1], 'tanh')
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 1, 1, 0])
nn.fit(X, y)
for i in [[0, 0], [0, 1], [1, 0], [1,1]]:
print(i,nn.predict(i))
output:
0 ... [99.46125954]
1000 ... [13.75662528]
2000 ... [0.89069164]
3000 ... [0.04930435]
4000 ... [0.02505558]
5000 ... [0.00486738]
6000 ... [0.00715196]
7000 ... [0.00313886]
8000 ... [0.0028314]
9000 ... [4.51779469e-05]
[0, 0] [0.00068042]
[0, 1] [0.9962246]
[1, 0] [0.99607674]
[1, 1] [-0.00014186]
该代码可能有问题

1873

被折叠的 条评论
为什么被折叠?



