假设原本数据集是如下的 csv 格式,行代表时间,列数代表变量数。

用它来构造机器学习的数据集,也就是有监督标签的样本。

代码一
import torch
import torch.utils.data
import os
import numpy as np
import pandas as pd
class MTSDataset(torch.utils.data.Dataset):
"""Multi-variate Time-Series Dataset for *.txt file
Returns:
[sample, label]
"""
def __init__(self,
window,
horizon,
data_name='electricity',
set_type='train', # 'train'/'validation'/'test'
data_dir='./data'):
assert type(set_type) == type('str')
self.window = window
self.horizon = horizon
self.data_dir = data_dir
self.set_type = set_type
file_path = os.path.join(data_dir, data_name, '{}_{}.txt'.format(data_name, set_type))
rawdata = np.loadtxt(open(file_path), delimiter=',')
self.len, self.var_num = rawdata.shape
self.sample_num = max(self.len - self.window - self.horizon + 1, 0)
self.samples, self.labels = self.__getsamples(rawdata)
def __getsamples(self, data):
X = torch.zeros((self.sample_num, self.window, self.var_num))
Y = torch.zeros((self.sample_num, 1, self.var_num))
for i in range(self.sample_num):
start = i
end = i + self.window
X[i, :, :] = torch.from_numpy(data[start:end, :])
Y[i, :, :] =

最低0.47元/天 解锁文章
2297





