Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 18028 | Accepted: 8237 |
Description
Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).
Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di
Output
* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
Sample Input
4 6 1 4 2 6 3 12 2 7
Sample Output
23
题意:
给出N(1到3402)颗钻石,M(1到12880)总容量。再给出N颗每颗钻石的w(1到12880)容量和v价值。求在不超过总容量M的情况下往包放钻石的最大价值。
思路:
01背包问题。没有特殊条件(恰好装满),只要求求最大值故初始化为0。
AC:
#include<stdio.h> #include<string.h> int w[4000],d[4000]; int dp[15000]; int main() { int n,m; while(scanf("%d%d",&n,&m)!=EOF) { memset(dp,0,sizeof(dp)); for(int i=1;i<=n;i++) scanf("%d%d",&w[i],&d[i]); for(int i=1;i<=n;i++) for(int j=m;j>=w[i];j--) dp[j]=(dp[j]>dp[j-w[i]]+d[i]?dp[j]:dp[j-w[i]]+d[i]); printf("%d\n",dp[m]); } return 0; }