Charm Bracelet(01背包)

本文介绍了一种经典的计算机科学问题——01背包问题,并通过一个具体的示例详细讲解了如何解决此类问题。文章中提供了完整的C语言代码实现,旨在帮助读者理解如何在给定重量限制下选择物品以达到价值最大化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Charm Bracelet
Time Limit: 1000MS  Memory Limit: 65536K
Total Submissions: 18028  Accepted: 8237

Description

Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di

Output

* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

Sample Input

4 6
1 4
2 6
3 12
2 7

Sample Output

23

 

    题意:

    给出N(1到3402)颗钻石,M(1到12880)总容量。再给出N颗每颗钻石的w(1到12880)容量和v价值。求在不超过总容量M的情况下往包放钻石的最大价值。

   

    思路:

    01背包问题。没有特殊条件(恰好装满),只要求求最大值故初始化为0。

 

    AC:

#include<stdio.h>
#include<string.h>
int w[4000],d[4000];
int dp[15000];

int main()
{
	int n,m;
	while(scanf("%d%d",&n,&m)!=EOF)
	{
	memset(dp,0,sizeof(dp));
	for(int i=1;i<=n;i++)
		scanf("%d%d",&w[i],&d[i]);
	for(int i=1;i<=n;i++)
		for(int j=m;j>=w[i];j--)
			dp[j]=(dp[j]>dp[j-w[i]]+d[i]?dp[j]:dp[j-w[i]]+d[i]);
	printf("%d\n",dp[m]);
	}
	return 0;
}

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值