1.29
cube :: Double -> Double
cube x = x*x*x
getSum term a next b = if a>b then 0 else term a + getSum term (next a) next b
simpsonIntegral :: (Double -> Double) -> Double -> Double -> Integer -> IO ()
simpsonIntegral f a b n = do print $ (h/3) * (getSum simpson_term 0 (+1) n)
where h = (b-a)/(fromIntegral n)
simpson_term k = t * f (a+(fromIntegral k)*h)
where t | k==0 = 1
| k==n = 1
| odd k = 4
| otherwise = 2
1.30
sum_iter term a next b = iter a 0
where iter x result = if (x>b) then result else iter (next x) (result + term(x))
-- use foldl
sum_iter' term a next b = foldl term' 0 [a,a'..b]
where a'=next a
term' x y = x + (term y)
1.31
-- getPi n = 4* (foldl (\x -> \y -> x* (y*y-1)/(y*y)) 1 [3,5..(2*n+1)])
getProduct term a next b =
if a>b then 1 else (term a)*(getProduct term (next a) next b)
getPi n = 4 * (getProduct piTerm 1 (+1) n)
where piTerm k
| odd k = (fromIntegral (k+1))/(fromIntegral (k+2))
| even k = (fromIntegral (k+2))/(fromIntegral (k+1))
getProduct' term a next b = iter a 1
where iter x p = if (x>b) then p else iter (next x) (p*term(x))
getPi' n = 4 * (getProduct' piTerm 1 (+1) n)
where piTerm k
| odd k = (fromIntegral (k+1))/(fromIntegral (k+2))
| even k = (fromIntegral (k+2))/(fromIntegral (k+1))
1.32
accumulate combiner null_value term a next b = accumulate_iter a null_value
where accumulate_iter x ans = if x > b then ans else accumulate_iter (next x) (combiner (term x) ans)
getSum term a next b = accumulate (+) 0 term a next b
getProduct term a next b = accumulate (*) 1 term a next b
accumulate' combiner null_value term a next b =
if (a>b)
then null_value
else combiner (term a) (accumulate' combiner null_value term (next a) next b)
1.33
fillteredAccumulator combiner null_value term a next b fillter = iter a null_value
where iter x ans = if x>b then ans else iter (next x) (combiner (if fillter x then term x else null_value) ans)
getPositiveSum term a next b = fillteredAccumulator (+) 0 term a next b (\x -> x>0)
1.34 略
1.35
fixedPoint f firstGuess = try firstGuess
where try guess = if (closeEnough guess guess') then guess else try guess'
where guess' = f guess
closeEnough a b = if (abs (a-b) < tolerance) then True else False
where tolerance = 0.00001
goldenRatio = fixedPoint (\x -> 1 + 1/x) 1
1.36~1.46 无聊,略
295

被折叠的 条评论
为什么被折叠?



