使用opencv实现
#include <opencv2/opencv.hpp>
#include <vector>
#include <algorithm>
// 计算旋转矩形的协方差矩阵参数 (a, b, c)
void getCovarianceParams(const cv::RotatedRect& obb, double& a, double& b, double& c) {
const double w = obb.size.width;
const double h = obb.size.height;
const double angle_rad = obb.angle * CV_PI / 180.0;
const double cos_theta = std::cos(angle_rad);
const double sin_theta = std::sin(angle_rad);
a = (w*w*cos_theta*cos_theta + h*h*sin_theta*sin_theta) / 12.0;
b = (w*w*sin_theta*sin_theta + h*h*cos_theta*cos_theta) / 12.0;
c = (w*w - h*h) * sin_theta * cos_theta / 12.0;
}
// 计算两个旋转框的ProbIoU
double calculateProbIoU(const cv::RotatedRect& obb1, const cv::RotatedRect& obb2, double eps = 1e-7) {
cv::Point2f center1 = obb1.center;
cv::Point2f center2 = obb2.center;
double x1 = center1.x, y1 = center1.y;
double x2 = center2.x, y2 = center2.y;
double a1, b1, c1, a2, b2, c2;
getCovarianceParams(obb1, a1, b1, c1);
getCovarianceParams(obb2, a2, b2, c2);
double t1 = ((a1 + a2) * std::pow(y1 - y2, 2) + (b1 + b2) * std::pow(x1 - x2, 2)) /
((a1 + a2) * (b1 + b2) - std::pow(c1 + c2, 2) + eps) * 0.25;
double t2 = ((c1 + c2) * (x2 - x1) * (y1 - y2)) /
((a1 + a2) * (b1 + b2) - std::pow(c1 + c2, 2) + eps) * 0.5;
double t3 = std::log(((a1 + a2) * (b1 + b2) - std::pow(c1 + c2, 2)) /
(4 * std::sqrt(std::max(a1*b1 - c1*c1, 0.0) * std::max(a2*b2 - c2*c2, 0.0)) + eps) + eps) * 0.5;
double bd = std::clamp(t1 + t2 + t3, eps, 100.0);
double hd = std::sqrt(1.0 - std::exp(-bd) + eps);
return 1.0 - hd;
}
// 基于ProbIoU的旋转框NMS
void NMSBoxesRotated(const std::vector<cv::RotatedRect>& boxes,
const std::vector<float>& scores,
float score_threshold,
float nms_threshold,
std::vector<int>& indices,
float eps = 1e-7) {
// 1. 过滤低分框
std::vector<int> valid_indices;
for (size_t i = 0; i < scores.size(); ++i) {
if (scores[i] >= score_threshold) {
valid_indices.push_back(i);
}
}
// 2. 按分数降序排序
std::sort(valid_indices.begin(), valid_indices.end(),
[&scores](int lhs, int rhs) { return scores[lhs] > scores[rhs]; });
// 3. 进行ProbIoU NMS
std::vector<bool> is_suppressed(valid_indices.size(), false);
for (size_t i = 0; i < valid_indices.size(); ++i) {
if (is_suppressed[i]) continue;
indices.push_back(valid_indices[i]);
for (size_t j = i + 1; j < valid_indices.size(); ++j) {
if (is_suppressed[j]) continue;
double piou = calculateProbIoU(boxes[valid_indices[i]],
boxes[valid_indices[j]],
eps);
if (piou > nms_threshold) {
is_suppressed[j] = true;
}
}
}
}
// 使用示例
int main() {
// 模拟输入数据
std::vector<cv::RotatedRect> boxes = {
cv::RotatedRect(cv::Point2f(100, 100), cv::Size2f(50, 30), 45),
cv::RotatedRect(cv::Point2f(110, 110), cv::Size2f(55, 35), 40),
cv::RotatedRect(cv::Point2f(200, 200), cv::Size2f(60, 40), 30)
};
std::vector<float> scores = {0.9f, 0.8f, 0.95f};
// 调用NMS
std::vector<int> indices;
NMSBoxesRotated(boxes, scores, 0.5f, 0.4f, indices);
// 输出结果
for (int idx : indices) {
std::cout << "保留框索引: " << idx
<< ", 分数: " << scores[idx]
<< ", 中心点: " << boxes[idx].center
<< std::endl;
}
return 0;
}