The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m)
. This is equivalent to ax≡1 (mod m)
.
Input
There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
OutputFor each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".
Sample Input3 3 11 4 12 5 13Sample Output
4 Not Exist 8
References
题意:求a的逆元x
思路:关于欧几里得的知识看一看这篇博文点击打开链接
#include<iostream>
#include<string>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
ll exgcd(ll a,ll b,ll &x, ll &y){
if(b==0){
x=1;
y=0;
return a;
}
ll r=exgcd(b,a%b,y,x);
y-=x*(a/b);
return r;
}
int main(){
int T;
scanf("%d",&T);
while(T--){
ll a,m;
cin>>a>>m;
ll x,y;
ll r=exgcd(a,m,x,y);
if(r==1){
while(x<=0){
x+=m/r;
}
cout<<x<<endl;
}
else cout<<"Not Exist"<<endl;
}
return 0;
}