HDU 6231 K-th Number(二分)

本文介绍了一种使用二分查找法解决特定子序列问题的方法。问题要求从原序列中选择长度大于K的子序列,并从中构建新的序列,最后找出新序列中第M大的元素。文章详细解释了如何通过尺取法结合二分查找来高效解决问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:点击打开链接

题意:从原序列A中所有长度大于K的子序列中选取第K大的数组成新序列B,输出B中第M大数。

这题不是看题解说是二分完全想不到,一直在想有没有什么数据结构可以维护。其实即使知道二分这道题也并不是很好写,二分答案之后我们需要验证答案的可行性,关键就在于怎么快速求出当前的mid能作为第K大的区间有多少个。这个地方可以尺取,每次我只需要统计从起点到目前位置有多少个数大于等于mid,当个大于等于mid的数达到K时,这样以当前起点组成的所有区间都大于等于mid,然后移动起点接着统计答案,这样遍历完整个序列我们所统计出了所有区间的第K大都是大于mid的,如果这样的区间个数大于等于M,那么显然我们当期的mid小了,反之则mid大了。

AC代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<algorithm>
using namespace std;
const int MAXM=1e5;
const long long MOD=1000000007;
const int INF=1e9;
const double PI=acos(-1);

int n,k;
long long m;
int a[MAXM+10];

long long check(int x) {
	int st=1;
	int num=0;
	long long res=0;
	for (int i=1;i<=n;i++) {
		if (a[i]>=x) num++;
		if (num==k) {
			res+=n-i+1;
			while(a[st]<x) {
				st++;
				res+=n-i+1;
			}
			num=num-1;
			st++;
		}
	}
	return res;
}
int main()
{
	int T;
	scanf("%d",&T);
	while(T--) {
		scanf("%d%d%lld",&n,&k,&m);
		for (int i=1;i<=n;i++)
			scanf("%d",&a[i]);
		int l=1,r=INF;
		while(l<r) {
			int mid=(l+r)/2;
			if (check(mid)>=m) l=mid+1;
			else r=mid;
		}
		printf("%d\n",l-1);
	}
	return 0;
}

### HDU 1443 约瑟夫问题解析 #### 题目描述 题目涉及的是经典的约瑟夫环问题的一个变种。给定一个整数 \( k \),表示有 \( k \) 个好人和 \( k \) 个坏人,总共 \( 2k \) 个人围成一圈。编号从 1 到 \( 2k \),其中前 \( k \) 个为好人,后 \( k \) 个为坏人。目标是在不杀死任何好人的前提下,找到可以先消灭所有坏人的最小步数 \( n \)[^5]。 #### 解题思路 为了确保在杀掉第一个好人之前能将所有的坏人都清除,可以通过模拟约瑟夫环的过程来寻找符合条件的最小步数 \( n \)。一种有效的方法是利用动态规划的思想逐步缩小范围直到找到最优解。对于较大的 \( k \),由于数值较大可能导致计算复杂度增加,因此需要考虑算法效率并进行适当优化[^1]。 #### Python 实现代码 下面提供了一个基于Python编写的解决方案: ```python def josephus(k): m = 2 * k def find_min_n(m, start=1): for n in range(1, m + 1): pos = (start + n - 2) % m + 1 if all((pos - i) % m > k or (pos - i) % m == 0 for i in range(n)): return n raise ValueError("No solution found") min_n = None for good_start in range(1, k + 1): try: current_min = find_min_n(m=m, start=good_start) if not min_n or current_min < min_n: min_n = current_min except ValueError as e: continue return min_n if __name__ == "__main__": test_cases = [int(input()) for _ in range(int(input()))] results = [] for case in test_cases: result = josephus(case) print(result) ``` 此段代码实现了上述提到的逻辑,并且能够处理多个测试案例。需要注意的是,在实际应用中可能还需要进一步调整参数以及边界条件以适应不同情况下的需求[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值