欢迎前往个人博客 驽马点滴 和视频空间 哔哩哔哩-《挨踢日志》
abm.m
function A = abm(f,T,Y)
%Input - f is the function entered as a string 'f'
% - T is the vector of abscissas
% - Y is the vector of ordinates
%Remark. The first four coordinates of T and Y must
% have starting values obtained with RK4
%Output - A=[T?? Y??] where T is the vector of abscissas
% and Y is the vector of ordinates
n=length(T);
if n>=5
F=zeros(1,4);
F=feval(f, T(1:4), Y(1:4));
h=T(2)-T(1);
for k=4:n-1
%Predictor
p=Y(k)+(h/24)*(F*[-9 37 -59 55]');
T(k+1)=T(1)+h*k;
F=[F(2) F(3) F(4) feval(f, T(k+1), p)];
%Corrector
Y(k+1)=Y(k)+(h/24)*(F*[1 -5 19 9]');
F(4)=feval(f, T(k+1), Y(k+1));
end
A=[T' Y'];
end
fun1.m
function f=fun1(t,y)
f=t.^2-y;
Untitlel.m
T=[0,0.05,0.10,0.15,0.20,0.25,0.03];
Y=[1,0.95127058,0.90516258,0.86179202,0,0,0];
f='fun1';
A=abm(f,T,Y)
欢迎前往个人博客
驽马点滴 和视频空间
哔哩哔哩-《挨踢日志》