1)先证明:e0=1e^{0}=1e0=1
∵e=lim△→∞(1+1△)△=limx→0(1+x)1x\because e=\lim_{\triangle\to\infin}{(1+\frac{1}{\triangle})^{\triangle}}=\lim_{x\to 0}(1+x)^{\frac{1}{x}}∵e=△→∞lim(1+△1)△=x→0lim(1+x)x1∴e0=limx→0(1+x)1x⋅x=limx→01+x=1\therefore e^{0}=\lim_{x\to 0}(1+x)^{\frac{1}{x}· x}=\lim _{x\to 0}1+x=1∴e0=x→0lim(1+x)x1⋅x=x→0lim1+x=1
2)证明正数:
A∈R,A>0,A0=e0A\in\R ,A>0,A^{0}=e^{0}A∈R,A>0,A0=e0
根据公式:u(x)v(x)=eu(x)lnv(x)u(x)^{v(x)}=e^{u(x)\ln v(x)}u(x)v(x)=eu(x)lnv(x)则A0=e0lnA=e0=1A^{0}=e^{0\ln A}=e^{0}=1A0=e0lnA=e0=1
3)再证明:(−1)0=1(-1)^{0}=1(−1)0=1
(其实这个证法就足以证明全部了)
∵0=C−C,其中C≠0且C∈Z\because0=C-C,其中C\neq0且C\in\mathbb {Z}∵0=C−C,其中C=0且C∈Z∴(−1)0=(−1)(C−C)=(−1)C(−1)C=1\therefore (-1)^{0}=(-1)^{(C-C)}=\frac{(-1)^{C}}{(-1)^C}=1∴(−1)0=(−1)(C−C)=(−1)C(−1)C=1
4)证明负数:
A∈R,A<0,A0=e0A\in\R,A<0,A^{0}=e^{0}A∈R,A<0,A0=e0A0=(−1)0(−A)0A^{0}=(-1)^{0}(-A)^{0}A0=(−1)0(−A)0∵A<0∴(−A)>0,(−A)0=e0\because A<0\therefore (-A)>0,(-A)^{0}=e^{0}∵A<0∴(−A)>0,(−A)0=e0A0=(−1)0e0=e0A^{0}=(-1)^{0}e^{0}=e^{0}A0=(−1)0e0=e0