本文目录
1虚数
定义:
−
1
=
i
i
2
=
−
1
\sqrt{-1}=i\quad i^{2}=-1
−1=ii2=−1
−
2
=
2
i
\sqrt{-2}=\sqrt{2}i
−2=2i
在数学里通常用i来代替sqrt(-1)。
幂运算:
| 虚数的幂 |
|---|
| i(-3) = i |
| i(-2) = -1 |
| i(-1) = -i |
| i0 = 1 |
| i1 = i |
| i2 = -1 |
| i3 = -i |
| i4 = 1 |
| … |
| in = in-4 |
2复数
复数就是形如(a+bi)的数。
z
=
a
+
b
i
z=a+bi
z=a+bi
显然地,当a=0时则z为纯虚数,当b=0时z为实数。
所有复数的集合为C。相应地,有
R
⊂
≠
C
\mathbb R\underset{\neq}{\subset}\mathbb C
R=⊂C
共轭复数
复数z=a+bi,其共轭复数为a-bi。写作:
z
=
a
+
b
i
z
ˉ
=
a
−
b
i
z=a+bi\quad \={z}=a-bi
z=a+bizˉ=a−bi
共轭复数有一些有趣的性质。
z
⋅
z
ˉ
=
a
2
+
b
2
z ·\={z}=a^{2}+b^{2}
z⋅zˉ=a2+b2
复数的概念与图像

建立一个平面直角坐标系,令 z = a + b i , 点 P = ( a , b ) z=a+bi,点P=(a,b) z=a+bi,点P=(a,b) 则 z 与 O B → 有着一些相似之处。 则z与\overrightarrow{OB}有着一些相似之处。 则z与OB有着一些相似之处。 ∣ z ∣ = ∣ O B → ∣ = a 2 + b 2 |z|=|\overrightarrow{OB}|=\sqrt{a^2+b^2} ∣z∣=∣OB∣=a2+b2
幅角
如上图,
z
的幅角即
θ
,
记作
A
r
g
z
如上图,z的幅角即\phase{\theta},记作Argz
如上图,z的幅角即θ,记作Argz
Argz用弧度制表示,其值有无限个,为
θ
+
2
n
π
(
n
∈
Z
)
\theta + 2n\pi (n\in\mathbb Z)
θ+2nπ(n∈Z)
其中,当n=0时称为幅角主值,记作
a
r
g
z
,
a
r
g
z
∈
(
−
π
,
π
]
argz\quad,argz\in (-\pi,\pi]
argz,argz∈(−π,π]
当|z|=0时幅角没有意义。
a
r
g
z
=
arctan
b
a
(a>0)
argz=\arctan{\frac{b}{a}} \tag{a>0}
argz=arctanab(a>0)
a
r
g
z
=
π
2
(a=0,b>0)
argz=\frac{\pi}{2}\tag{a=0,b>0}
argz=2π(a=0,b>0)
a
r
g
z
=
−
π
2
(a=0,b<0)
argz=-\frac{\pi}{2}\tag{a=0,b<0}
argz=−2π(a=0,b<0)
a
r
g
z
=
arctan
b
a
+
π
(a<0,b>=0)
argz=\arctan{\frac{b}{a}} +\pi \tag{a<0,b>=0}
argz=arctanab+π(a<0,b>=0)
a
r
g
z
=
arctan
b
a
−
π
(a<0,b<0)
argz=\arctan{\frac{b}{a}} -\pi \tag{a<0,b<0}
argz=arctanab−π(a<0,b<0)
以上为计算公式。
3欧拉公式
e
i
x
=
cos
(
x
)
+
i
sin
(
x
)
e^{ix} = \cos (x)+i\sin(x)
eix=cos(x)+isin(x)
一个复数可以表示成多种形态。
复数表示-代数式:
z = ( a + b i ) z=\left(a+bi\right) z=(a+bi)
复数表示-三角式:
z = r ( cos θ + i sin θ ) r = ∣ z ∣ , θ = a r g z z=r\left(\cos\theta+i\sin\theta\right)\quad r=|z|,\theta=argz z=r(cosθ+isinθ)r=∣z∣,θ=argz
复数表示-指数式:
z
=
r
e
i
θ
r
=
∣
z
∣
,
θ
=
a
r
g
z
z=re^{i\theta}\quad r=|z|,\theta=argz
z=reiθr=∣z∣,θ=argz
三角式和代数式可以通过欧拉公式进行变换。
4复数运算
加法
z
1
=
a
1
+
b
1
i
=
r
1
(
cos
θ
1
+
i
sin
θ
1
)
=
r
1
e
i
θ
1
z_{1}=a_{1}+b_{1}i=r_{1}(\cos\theta_{1}+i\sin\theta_{1})=r_{1}e^{i\theta_{1}}
z1=a1+b1i=r1(cosθ1+isinθ1)=r1eiθ1
z
2
=
a
2
+
b
2
i
=
r
2
(
cos
θ
2
+
i
sin
θ
2
)
=
r
2
e
i
θ
2
z_{2}=a_{2}+b_{2}i=r_{2}(\cos\theta_{2}+i\sin\theta_{2})=r_{2}e^{i\theta_{2}}
z2=a2+b2i=r2(cosθ2+isinθ2)=r2eiθ2
z
1
+
z
2
=
(
a
1
+
a
2
)
+
i
(
b
1
+
b
2
)
z_{1}+z_{2}=\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right)
z1+z2=(a1+a2)+i(b1+b2)
减法
z
1
=
a
1
+
b
1
i
=
r
1
(
cos
θ
1
+
i
sin
θ
1
)
=
r
1
e
i
θ
1
z_{1}=a_{1}+b_{1}i=r_{1}(\cos\theta_{1}+i\sin\theta_{1})=r_{1}e^{i\theta_{1}}
z1=a1+b1i=r1(cosθ1+isinθ1)=r1eiθ1
z
2
=
a
2
+
b
2
i
=
r
2
(
cos
θ
2
+
i
sin
θ
2
)
=
r
2
e
i
θ
2
z_{2}=a_{2}+b_{2}i=r_{2}(\cos\theta_{2}+i\sin\theta_{2})=r_{2}e^{i\theta_{2}}
z2=a2+b2i=r2(cosθ2+isinθ2)=r2eiθ2
z
1
−
z
2
=
(
a
1
−
a
2
)
+
i
(
b
1
−
b
2
)
z_{1}-z_{2}=\left(a_{1}-a_{2}\right)+i\left(b_{1}-b_{2}\right)
z1−z2=(a1−a2)+i(b1−b2)
乘法
z
1
=
a
1
+
b
1
i
=
r
1
(
cos
θ
1
+
i
sin
θ
1
)
=
r
1
e
i
θ
1
z_{1}=a_{1}+b_{1}i=r_{1}(\cos\theta_{1}+i\sin\theta_{1})=r_{1}e^{i\theta_{1}}
z1=a1+b1i=r1(cosθ1+isinθ1)=r1eiθ1
z
2
=
a
2
+
b
2
i
=
r
2
(
cos
θ
2
+
i
sin
θ
2
)
=
r
2
e
i
θ
2
z_{2}=a_{2}+b_{2}i=r_{2}(\cos\theta_{2}+i\sin\theta_{2})=r_{2}e^{i\theta_{2}}
z2=a2+b2i=r2(cosθ2+isinθ2)=r2eiθ2
z
1
z
2
=
(
a
1
a
2
−
b
1
b
2
)
+
i
(
a
1
b
2
+
a
2
b
1
)
z_{1}z_{2}=\left(a_{1}a_{2}-b_{1}b_{2}\right)+i\left(a_{1}b_{2}+a_{2}b_{1}\right)
z1z2=(a1a2−b1b2)+i(a1b2+a2b1)
以下内容为简化计算时的本人所推附加公式
当
z
1
=
a
1
−
b
1
i
z_{1}=a_{1}-b_{1}i
z1=a1−b1i
z
2
=
a
2
−
b
2
i
z_{2}=a_{2}-b_{2}i
z2=a2−b2i时,
z
1
z
2
=
(
a
1
a
2
−
b
1
b
2
)
+
i
(
−
a
1
b
2
−
a
2
b
1
)
z_{1}z_{2}=\left(a_{1}a_{2}-b_{1}b_{2}\right)+i\left(-a_{1}b_{2}-a_{2}b_{1}\right)
z1z2=(a1a2−b1b2)+i(−a1b2−a2b1)
当
z
1
=
a
1
−
b
1
i
z_{1}=a_{1}-b_{1}i
z1=a1−b1i
z
2
=
a
2
+
b
2
i
z_{2}=a_{2}+b_{2}i
z2=a2+b2i时,
z
1
z
2
=
(
a
1
a
2
+
b
1
b
2
)
+
i
(
a
1
b
2
−
a
2
b
1
)
z_{1}z_{2}=\left(a_{1}a_{2}+b_{1}b_{2}\right)+i\left(a_{1}b_{2}-a_{2}b_{1}\right)
z1z2=(a1a2+b1b2)+i(a1b2−a2b1)
当
z
1
=
a
1
+
b
1
i
z_{1}=a_{1}+b_{1}i
z1=a1+b1i
z
2
=
a
2
−
b
2
i
z_{2}=a_{2}-b_{2}i
z2=a2−b2i时,
z
1
z
2
=
(
a
1
a
2
+
b
1
b
2
)
+
i
(
−
a
1
b
2
+
a
2
b
1
)
z_{1}z_{2}=\left(a_{1}a_{2}+b_{1}b_{2}\right)+i\left(-a_{1}b_{2}+a_{2}b_{1}\right)
z1z2=(a1a2+b1b2)+i(−a1b2+a2b1)
除法
z
1
=
a
1
+
b
1
i
=
r
1
(
cos
θ
1
+
i
sin
θ
1
)
=
r
1
e
i
θ
1
z_{1}=a_{1}+b_{1}i=r_{1}(\cos\theta_{1}+i\sin\theta_{1})=r_{1}e^{i\theta_{1}}
z1=a1+b1i=r1(cosθ1+isinθ1)=r1eiθ1
z
2
=
a
2
+
b
2
i
=
r
2
(
cos
θ
2
+
i
sin
θ
2
)
=
r
2
e
i
θ
2
z_{2}=a_{2}+b_{2}i=r_{2}(\cos\theta_{2}+i\sin\theta_{2})=r_{2}e^{i\theta_{2}}
z2=a2+b2i=r2(cosθ2+isinθ2)=r2eiθ2
z
1
z
2
=
z
1
z
ˉ
2
z
2
z
ˉ
2
=
(
a
1
a
2
+
b
1
b
2
)
+
i
(
a
2
b
1
−
a
1
b
2
)
a
2
2
+
b
2
2
\frac{z_{1}}{z_{2}}=\frac{z_{1}\=z_{2}}{z_{2}\=z_{2}}=\frac{\left(a_{1}a_{2}+b_{1}b_{2}\right)+i\left(a_{2}b_{1}-a_{1}b_{2}\right)}{a_{2}^{2}+b_{2}^{2}}
z2z1=z2zˉ2z1zˉ2=a22+b22(a1a2+b1b2)+i(a2b1−a1b2)
=
(
a
1
a
2
+
b
1
b
2
)
a
2
2
+
b
2
2
+
(
a
2
b
1
−
a
1
b
2
)
a
2
2
+
b
2
2
i
=\frac{\left(a_{1}a_{2}+b_{1}b_{2}\right)}{a_{2}^{2}+b_{2}^{2}}+\frac{\left(a_{2}b_{1}-a_{1}b_{2}\right)}{a_{2}^{2}+b_{2}^{2}}i
=a22+b22(a1a2+b1b2)+a22+b22(a2b1−a1b2)i
开n次根号
z
=
a
+
b
i
=
r
(
cos
θ
+
i
sin
θ
)
=
r
e
i
θ
z=a+bi=r(\cos\theta+i\sin\theta)=re^{i\theta}
z=a+bi=r(cosθ+isinθ)=reiθ
z
n
=
[
r
(
cos
θ
+
i
sin
θ
)
]
1
n
\sqrt[n]{z}=\left[r\left(\cos\theta+i\sin\theta\right)\right]^{\frac{1}{n}}
nz=[r(cosθ+isinθ)]n1
这个算式的解有n个,为:
ω
k
=
r
1
n
(
cos
2
k
π
+
θ
n
+
i
sin
2
k
π
+
θ
n
)
(
k=0,1,2,3,...,n-1
)
\small{\omega_{k}=r^{\frac{1}{n}}(\cos\frac{2k\pi+\theta}{n}+i\sin\frac{2k\pi+\theta}{n})\quad\quad\quad\quad\quad}\tag{\tiny{k=0,1,2,3,...,n-1}}
ωk=rn1(cosn2kπ+θ+isinn2kπ+θ)(k=0,1,2,3,...,n-1)
开复数次方
n z , n ∈ R = n a n b i n^z,n\in\mathbb R=n^{a}n^{bi} nz,n∈R=nanbi
sin正弦与cosine余弦
1定义
复数域C下正弦函数:
sin
z
=
e
i
z
−
e
−
i
z
2
i
\sin z=\frac{e^{iz}-e^{-iz}}{2i}
sinz=2ieiz−e−iz余弦函数:
cos
z
=
e
i
z
+
e
−
i
z
2
\cos z=\frac{e^{iz}+e^{-iz}}{2}
cosz=2eiz+e−iz
定义同时满足实数范围。即当z变为一个实数x时,上述两式所得结果符合实数域下正余弦。可以用欧拉公式辅助证明。证略。
复数满足两角和公式
同样利用欧拉公式。证略。
2实部和虚部
预备:双曲正弦函数和双曲余弦函数的计算公式
双曲正弦(sinh)的计算公式:
sinh
x
=
e
x
−
e
−
x
2
\sinh x=\frac{e^{x}-e^{-x}}{2}
sinhx=2ex−e−x
双曲余弦(cosh)的计算公式:
cosh
x
=
e
x
+
e
−
x
2
\cosh x=\frac{e^{x}+e^{-x}}{2}
coshx=2ex+e−x
正文
z
=
a
+
b
i
z=a+bi
z=a+bi
sin
z
=
sin
(
a
+
b
i
)
=
sin
a
cos
b
i
+
cos
a
sin
b
i
\sin z=\sin{(a+bi)}=\sin a\cos bi+\cos a\sin bi
sinz=sin(a+bi)=sinacosbi+cosasinbi
cos
z
=
cos
(
a
+
b
i
)
=
cos
a
cos
b
i
−
sin
a
sin
b
i
\cos z=\cos{(a+bi)}=\cos a\cos bi-\sin a\sin bi
cosz=cos(a+bi)=cosacosbi−sinasinbi
其中的cos bi和sin bi根据复数正弦函数的定义可以分别化为:
sin
b
i
=
e
−
b
−
e
b
2
i
=
i
e
b
−
e
−
b
2
=
i
sinh
b
\sin bi = \frac{e^{-b}-e^{b}}{2i}= i\frac{e^{b}-e^{-b}}{2}=i\sinh b
sinbi=2ie−b−eb=i2eb−e−b=isinhb
cos
b
i
=
e
−
y
+
e
y
2
=
cosh
b
\cos bi=\frac{e^{-y}+e^{y}}{2}=\cosh b
cosbi=2e−y+ey=coshb
将结论代入可得最终结果。
sin
z
=
sin
(
a
+
b
i
)
=
sin
a
cosh
b
+
i
cos
a
sinh
b
\sin z=\sin{(a+bi)}=\sin a\cosh b+i\cos a\sinh b
sinz=sin(a+bi)=sinacoshb+icosasinhb
cos
z
=
cos
(
a
+
b
i
)
=
cos
a
cosh
b
−
i
sin
a
sinh
b
\cos z=\cos{(a+bi)}=\cos a\cosh b-i\sin a\sinh b
cosz=cos(a+bi)=cosacoshb−isinasinhb
tan正切
tan ( z ) = sin ( z ) cos ( z ) \tan(z)=\frac{\sin(z)}{\cos(z)} tan(z)=cos(z)sin(z)
完
978

被折叠的 条评论
为什么被折叠?



