ros多传感器时间同步(message_filters)

本文介绍如何使用message_filters库在ROS环境中实现雷达数据和图像数据的精确时间同步,通过示例代码详细展示了同步过程及实现方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

message_filters是一个用于roscpp和rospy的实用程序库。 它集合了许多的常用的消息“过滤”算法。消息过滤器message_filters类似一个消息缓存,当消息到达消息过滤器的时候,可能并不会立即输出,而是在稍后的时间点里满足一定条件下输出。
举个例子,比如时间同步器,它接收来自多个源的不同类型的消息,并且仅当它们在具有相同时间戳的每个源上接收到消息时才输出它们,也就是起到了一个消息同步输出的效果。

下面同步雷达和图像的数据.代码如下:

// msg_filter.cpp

#include <ros/ros.h>
#include <sensor_msgs/PointCloud2.h>
#include <sensor_msgs/Image.h>
#include <message_filters/subscriber.h>
#include <message_filters/time_synchronizer.h>
#include <message_filters/sync_policies/approximate_time.h>
#include <iostream>

std::string img_topic = "/fuhong/_img";
std::string point_topic = "/fuhong/_points";

//rosbag::Bag bag_record;//文件直接记录

ros::Publisher img_pub;
ros::Publisher pointcloud_pub;
typedef message_filters::sync_policies::ApproximateTime<sensor_msgs::Image, sensor_msgs::PointCloud2> testSyncPolicy;

//回调函数
void callback(const sensor_msgs::ImageConstPtr &image, const sensor_msgs::PointCloud2ConstPtr &point)  //回调中包含多个消息
{
    //以实时发布的方式发布
    img_pub.publish(*image);
    pointcloud_pub.publish(*point);
}

int main(int argc, char **argv) {
    ros::init(argc, argv, "time_synch");
    ros::NodeHandle n;

    //发布的话题
    img_pub = n.advertise<sensor_msgs::Image>(img_topic, 1000);
    pointcloud_pub = n.advertise<sensor_msgs::PointCloud2>(point_topic, 1000);
    //订阅的话题
    message_filters::Subscriber<sensor_msgs::Image> img_sub(n, "/zed/zed_node/left/image_rect_color", 1);// topic1 输入
    message_filters::Subscriber<sensor_msgs::PointCloud2> pointcloud_sub(n, "/rslidar_points", 1);// topic2 输入

    message_filters::Synchronizer<testSyncPolicy> sync(testSyncPolicy(10), img_sub, pointcloud_sub);// 同步
    sync.registerCallback(boost::bind(&callback, _1, _2));

    ros::spin();
    ros::shutdown();

    return 0;
}

CMakeList.txt文件

cmake_minimum_required(VERSION 2.8.3)
project(subscriber)

## Compile as C++11, supported in ROS Kinetic and newer
# add_compile_options(-std=c++11)

## Find catkin macros and libraries
## if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
## is used, also find other catkin packages
find_package(catkin REQUIRED COMPONENTS
        roscpp
        rosmsg
        rospy
        message_filters
        )

## System dependencies are found with CMake's conventions
# find_package(Boost REQUIRED COMPONENTS system)


## Uncomment this if the package has a setup.py. This macro ensures
## modules and global scripts declared therein get installed
## See http://ros.org/doc/api/catkin/html/user_guide/setup_dot_py.html
# catkin_python_setup()

################################################
## Declare ROS messages, services and actions ##
################################################

## To declare and build messages, services or actions from within this
## package, follow these steps:
## * Let MSG_DEP_SET be the set of packages whose message types you use in
##   your messages/services/actions (e.g. std_msgs, actionlib_msgs, ...).
## * In the file package.xml:
##   * add a build_depend tag for "message_generation"
##   * add a build_depend and a exec_depend tag for each package in MSG_DEP_SET
##   * If MSG_DEP_SET isn't empty the following dependency has been pulled in
##     but can be declared for certainty nonetheless:
##     * add a exec_depend tag for "message_runtime"
## * In this file (CMakeLists.txt):
##   * add "message_generation" and every package in MSG_DEP_SET to
##     find_package(catkin REQUIRED COMPONENTS ...)
##   * add "message_runtime" and every package in MSG_DEP_SET to
##     catkin_package(CATKIN_DEPENDS ...)
##   * uncomment the add_*_files sections below as needed
##     and list every .msg/.srv/.action file to be processed
##   * uncomment the generate_messages entry below
##   * add every package in MSG_DEP_SET to generate_messages(DEPENDENCIES ...)

## Generate messages in the 'msg' folder
# add_message_files(
#   FILES
#   Message1.msg
#   Message2.msg
# )

## Generate services in the 'srv' folder
# add_service_files(
#   FILES
#   Service1.srv
#   Service2.srv
# )

## Generate actions in the 'action' folder
# add_action_files(
#   FILES
#   Action1.action
#   Action2.action
# )

## Generate added messages and services with any dependencies listed here
# generate_messages(
#   DEPENDENCIES
#   std_msgs  # Or other packages containing msgs
# )

################################################
## Declare ROS dynamic reconfigure parameters ##
################################################

## To declare and build dynamic reconfigure parameters within this
## package, follow these steps:
## * In the file package.xml:
##   * add a build_depend and a exec_depend tag for "dynamic_reconfigure"
## * In this file (CMakeLists.txt):
##   * add "dynamic_reconfigure" to
##     find_package(catkin REQUIRED COMPONENTS ...)
##   * uncomment the "generate_dynamic_reconfigure_options" section below
##     and list every .cfg file to be processed

## Generate dynamic reconfigure parameters in the 'cfg' folder
# generate_dynamic_reconfigure_options(
#   cfg/DynReconf1.cfg
#   cfg/DynReconf2.cfg
# )

###################################
## catkin specific configuration ##
###################################
## The catkin_package macro generates cmake config files for your package
## Declare things to be passed to dependent projects
## INCLUDE_DIRS: uncomment this if your package contains header files
## LIBRARIES: libraries you create in this project that dependent projects also need
## CATKIN_DEPENDS: catkin_packages dependent projects also need
## DEPENDS: system dependencies of this project that dependent projects also need
catkin_package(
        #  INCLUDE_DIRS include
        #  LIBRARIES subscriber
        #  CATKIN_DEPENDS roscpp rosmsg rospy
        #  DEPENDS system_lib
)

###########
## Build ##
###########

## Specify additional locations of header files
## Your package locations should be listed before other locations
include_directories(
        # include
        ${catkin_INCLUDE_DIRS}
)

## Declare a C++ library
# add_library(${PROJECT_NAME}
#   src/${PROJECT_NAME}/subscriber.cpp
# )

## Add cmake target dependencies of the library
## as an example, code may need to be generated before libraries
## either from message generation or dynamic reconfigure
# add_dependencies(${PROJECT_NAME} ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})

## Declare a C++ executable
## With catkin_make all packages are built within a single CMake context
## The recommended prefix ensures that target names across packages don't collide
# add_executable(${PROJECT_NAME}_node src/subscriber_node.cpp)
add_executable(msg_filter src/msg_filter.cpp)
target_link_libraries(msg_filter
        ${catkin_LIBRARIES}
        )

## Rename C++ executable without prefix
## The above recommended prefix causes long target names, the following renames the
## target back to the shorter version for ease of user use
## e.g. "rosrun someones_pkg node" instead of "rosrun someones_pkg someones_pkg_node"
# set_target_properties(${PROJECT_NAME}_node PROPERTIES OUTPUT_NAME node PREFIX "")

## Add cmake target dependencies of the executable
## same as for the library above
# add_dependencies(${PROJECT_NAME}_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_EXPORTED_TARGETS})

## Specify libraries to link a library or executable target against
# target_link_libraries(${PROJECT_NAME}_node
#   ${catkin_LIBRARIES}
# )

#############
## Install ##
#############

# all install targets should use catkin DESTINATION variables
# See http://ros.org/doc/api/catkin/html/adv_user_guide/variables.html

## Mark executable scripts (Python etc.) for installation
## in contrast to setup.py, you can choose the destination
# install(PROGRAMS
#   scripts/my_python_script
#   DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )

## Mark executables for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_executables.html
# install(TARGETS ${PROJECT_NAME}_node
#   RUNTIME DESTINATION ${CATKIN_PACKAGE_BIN_DESTINATION}
# )

## Mark libraries for installation
## See http://docs.ros.org/melodic/api/catkin/html/howto/format1/building_libraries.html
# install(TARGETS ${PROJECT_NAME}
#   ARCHIVE DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
#   LIBRARY DESTINATION ${CATKIN_PACKAGE_LIB_DESTINATION}
#   RUNTIME DESTINATION ${CATKIN_GLOBAL_BIN_DESTINATION}
# )

## Mark cpp header files for installation
# install(DIRECTORY include/${PROJECT_NAME}/
#   DESTINATION ${CATKIN_PACKAGE_INCLUDE_DESTINATION}
#   FILES_MATCHING PATTERN "*.h"
#   PATTERN ".svn" EXCLUDE
# )

## Mark other files for installation (e.g. launch and bag files, etc.)
# install(FILES
#   # myfile1
#   # myfile2
#   DESTINATION ${CATKIN_PACKAGE_SHARE_DESTINATION}
# )

#############
## Testing ##
#############

## Add gtest based cpp test target and link libraries
# catkin_add_gtest(${PROJECT_NAME}-test test/test_subscriber.cpp)
# if(TARGET ${PROJECT_NAME}-test)
#   target_link_libraries(${PROJECT_NAME}-test ${PROJECT_NAME})
# endif()

## Add folders to be run by python nosetests
# catkin_add_nosetests(test)

package.xml文件

<?xml version="1.0"?>
<package format="2">
  <name>subscriber</name>
  <version>0.0.0</version>
  <description>The subscriber package</description>

  <!-- One maintainer tag required, multiple allowed, one person per tag -->
  <!-- Example:  -->
  <!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> -->
  <maintainer email="fuhong@todo.todo">fuhong</maintainer>


  <!-- One license tag required, multiple allowed, one license per tag -->
  <!-- Commonly used license strings: -->
  <!--   BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 -->
  <license>TODO</license>


  <!-- Url tags are optional, but multiple are allowed, one per tag -->
  <!-- Optional attribute type can be: website, bugtracker, or repository -->
  <!-- Example: -->
  <!-- <url type="website">http://wiki.ros.org/subscriber</url> -->


  <!-- Author tags are optional, multiple are allowed, one per tag -->
  <!-- Authors do not have to be maintainers, but could be -->
  <!-- Example: -->
  <!-- <author email="jane.doe@example.com">Jane Doe</author> -->


  <!-- The *depend tags are used to specify dependencies -->
  <!-- Dependencies can be catkin packages or system dependencies -->
  <!-- Examples: -->
  <!-- Use depend as a shortcut for packages that are both build and exec dependencies -->
  <!--   <depend>roscpp</depend> -->
  <!--   Note that this is equivalent to the following: -->
  <!--   <build_depend>roscpp</build_depend> -->
  <!--   <exec_depend>roscpp</exec_depend> -->
  <!-- Use build_depend for packages you need at compile time: -->
  <!--   <build_depend>message_generation</build_depend> -->
  <!-- Use build_export_depend for packages you need in order to build against this package: -->
  <!--   <build_export_depend>message_generation</build_export_depend> -->
  <!-- Use buildtool_depend for build tool packages: -->
  <!--   <buildtool_depend>catkin</buildtool_depend> -->
  <!-- Use exec_depend for packages you need at runtime: -->
  <!--   <exec_depend>message_runtime</exec_depend> -->
  <!-- Use test_depend for packages you need only for testing: -->
  <!--   <test_depend>gtest</test_depend> -->
  <!-- Use doc_depend for packages you need only for building documentation: -->
  <!--   <doc_depend>doxygen</doc_depend> -->
  <buildtool_depend>catkin</buildtool_depend>
  <build_depend>roscpp</build_depend>
  <build_depend>rosmsg</build_depend>
  <build_depend>rospy</build_depend>
  <build_depend>message_filters</build_depend>
  <build_export_depend>roscpp</build_export_depend>
  <build_export_depend>rosmsg</build_export_depend>
  <build_export_depend>rospy</build_export_depend>
  <exec_depend>roscpp</exec_depend>
  <exec_depend>rosmsg</exec_depend>
  <exec_depend>rospy</exec_depend>
  <exec_depend>message_filters</exec_depend>


  <!-- The export tag contains other, unspecified, tags -->
  <export>
    <!-- Other tools can request additional information be placed here -->

  </export>
</package>

同步前的效果:
在这里插入图片描述
同步后的效果:
在这里插入图片描述

### ROS2 中 `message_filters` 的时间同步ROS2 中,虽然官方尚未完全支持像 ROS1 那样的 `message_filters` 功能模块[^4],但可以通过自定义实现来完成类似的时间同步功能。以下是基于现有工具和技术的解决方案。 #### 实现方法概述 为了实现在 ROS2 中类似于 `message_filters::sync_policies::ApproximateTime` 的功能,可以采用以下方式: - 使用 Python 或 C++ 编写节点程序。 - 手动管理消息队列并比较时间戳以匹配来自多个话题的消息。 - 借助第三方库(如 `rosbag2` 提供的相关接口)辅助开发。 --- #### 示例代码:Python 版本 下面是一个简单的 Python 节点示例,展示如何通过手动对比时间戳的方式,在 ROS2 中实现近似时间同步的功能。 ```python import rclpy from rclpy.node import Node from sensor_msgs.msg import Image, CameraInfo from std_msgs.msg import Header class TimeSynchronizer(Node): def __init__(self): super().__init__('time_synchronizer') self.image_sub_ = self.create_subscription( Image, '/camera/image_raw', self.image_callback, 10) self.info_sub_ = self.create_subscription( CameraInfo, '/camera/camera_info', self.info_callback, 10) # 存储未配对的消息 self.image_buffer = [] self.info_buffer = [] def image_callback(self, msg: Image): """存储图像消息""" self.image_buffer.append(msg) self.match_and_process() def info_callback(self, msg: CameraInfo): """存储相机参数消息""" self.info_buffer.append(msg) self.match_and_process() def match_and_process(self): """尝试匹配最近的一组消息""" while self.image_buffer and self.info_buffer: img_time = self.image_buffer[0].header.stamp.sec + \ self.image_buffer[0].header.stamp.nanosec * 1e-9 info_time = self.info_buffer[0].header.stamp.sec + \ self.info_buffer[0].header.stamp.nanosec * 1e-9 time_diff = abs(img_time - info_time) if time_diff < 0.1: # 定义可接受的最大时间差阈值 self.process_messages(self.image_buffer.pop(0), self.info_buffer.pop(0)) elif img_time < info_time: break else: self.info_buffer.pop(0) def process_messages(self, image_msg, camera_info_msg): """处理已匹配的消息""" self.get_logger().info(f'Processed synchronized messages with timestamps {image_msg.header.stamp} & {camera_info_msg.header.stamp}') def main(args=None): rclpy.init(args=args) node = TimeSynchronizer() try: rclpy.spin(node) except KeyboardInterrupt: pass finally: node.destroy_node() rclpy.shutdown() if __name__ == '__main__': main() ``` 上述代码实现了基本的时间同步逻辑,并允许用户调整最大时间偏差阈值以适应具体需求[^5]。 --- #### 示例代码:C++ 版本 对于更高效的性能要求场景,推荐使用 C++ 来编写类似的同步机制。下面是对应的 C++ 示例代码片段: ```cpp #include "rclcpp/rclcpp.hpp" #include "sensor_msgs/msg/image.hpp" #include "sensor_msgs/msg/camera_info.hpp" using namespace std::placeholders; class TimeSynchronizerNode : public rclcpp::Node { public: TimeSynchronizerNode() : Node("time_synchronizer") { image_sub_ = this->create_subscription<sensor_msgs::msg::Image>( "/camera/image_raw", 10, bind(&TimeSynchronizerNode::imageCallback, this, _1)); info_sub_ = this->create_subscription<sensor_msgs::msg::CameraInfo>( "/camera/camera_info", 10, bind(&TimeSynchronizerNode::infoCallback, this, _1)); } private: void imageCallback(const sensor_msgs::msg::Image::SharedPtr msg) { image_buffer_.push_back(*msg); matchAndProcess(); } void infoCallback(const sensor_msgs::msg::CameraInfo::SharedPtr msg) { info_buffer_.push_back(*msg); matchAndProcess(); } void matchAndProcess() { while (!image_buffer_.empty() && !info_buffer_.empty()) { auto img_time = image_buffer_[0].header.stamp; auto info_time = info_buffer_[0].header.stamp; double diff = fabs((img_time.sec - info_time.sec) + (img_time.nanosec - info_time.nanosec) / 1e9); if (diff < 0.1) { // 设置时间窗口大小 RCLCPP_INFO(this->get_logger(), "Matched images at %f", img_time.sec + img_time.nanosec * 1e-9); processMessages(image_buffer_.front(), info_buffer_.front()); image_buffer_.pop_front(); info_buffer_.pop_front(); } else if (img_time.sec + img_time.nanosec * 1e-9 < info_time.sec + info_time.nanosec * 1e-9) { break; // 图片过旧,等待新的图片到来 } else { info_buffer_.pop_front(); // 参数信息过旧 } } } void processMessages(sensor_msgs::msg::Image& image_msg, sensor_msgs::msg::CameraInfo& cam_info_msg) const { RCLCPP_INFO(this->get_logger(), "Processing matched data..."); } rclcpp::Subscription<sensor_msgs::msg::Image>::SharedPtr image_sub_; rclcpp::Subscription<sensor_msgs::msg::CameraInfo>::SharedPtr info_sub_; std::deque<sensor_msgs::msg::Image> image_buffer_; std::deque<sensor_msgs::msg::CameraInfo> info_buffer_; }; int main(int argc, char **argv) { rclcpp::init(argc, argv); rclcpp::spin(std::make_shared<TimeSynchronizerNode>()); rclcpp::shutdown(); return 0; } ``` 此版本同样遵循了双缓冲区设计模式,能够有效减少内存占用的同时提高运行效率[^6]。 --- #### 注意事项 尽管以上方案可以在一定程度上满足实际应用中的多源数据融合需求,但仍需注意以下几点: - 确保所有参与同步的话题均携带标准的时间戳字段; - 合理设置容忍范围内的最大延迟差异以免丢失过多潜在可用的数据组合; - 对于高频率更新的主题可能需要进一步优化算法降低计算复杂度。 ---
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值