leetcode -- 413. Arithmetic Slices

A sequence of number is called arithmetic if it consists of at least three elements and if the difference between any two consecutive elements is the same.

For example, these are arithmetic sequence:

1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9
The following sequence is not arithmetic.

1, 1, 2, 5, 7

A zero-indexed array A consisting of N numbers is given. A slice of that array is any pair of integers (P, Q) such that 0 <= P < Q < N.

A slice (P, Q) of array A is called arithmetic if the sequence:
A[P], A[p + 1], ..., A[Q - 1], A[Q] is arithmetic. In particular, this means that P + 1 < Q.

The function should return the number of arithmetic slices in the array A.


Example:

A = [1, 2, 3, 4]

return: 3, for 3 arithmetic slices in A: [1, 2, 3], [2, 3, 4] and [1, 2, 3, 4] itself.

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/arithmetic-slices
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

 

我的思路:

1. dp[i][j]表示从i到j是否是等差数列

2. 再枚举长度,但是有个样例(1,2,3,8,9,10)算出来是6,我自己验算是2....头秃!

class Solution {
public:
    int numberOfArithmeticSlices(vector<int>& A) {
        int len = A.size();
        if(len == 0) return 0;
        vector<vector<int>> dp(len, vector<int>(len,0));
        int ans = 0;
        for(int i = 0; i < len-1; i++){ //每一行
            dp[i][i] = 1;
            int arth = A[i+1]- A[i];
            for(int j = i+1; j < len; j++){
                if(A[j]-A[j-1] == arth){
                    dp[i][j] = 1;
                }
            }
        }
        
        for(int l = 3; l <= len; l++){
            for(int i = 0; i+l-1 < len; i++){
                int j = i+l-1;
                if(dp[i][j] == 1) ans++;
            }
        }
        return ans;
    }
};

 

参考代码思路:

1. dp[i]表示以元素A[i]结尾的等差数列的个数

class Solution {
public:
	int numberOfArithmeticSlices(vector<int>& A) {
		int len = A.size(), result = 0;
		vector<int> dp(len, 0);//dp[i]用于保存以A[i]结尾的等差数列的个数
		for (int i = 2; i < len; ++i) {//等差数列长度需要大于2,所以前两个必定为0
            //判断步长
			if (A[i] - A[i - 1] == A[i - 1] - A[i - 2]) {
				dp[i] = dp[i - 1] + 1;//转移方程
				result += dp[i];//求和
			}
		}
		return result;
	}
};
--------------------- 
作者:hestyle 
来源:优快云 
原文:https://blog.youkuaiyun.com/qq_41855420/article/details/88721808 
版权声明:本文为博主原创文章,转载请附上博文链接!

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值