Given a square array of integers A, we want the minimum sum of a falling path through A.
A falling path starts at any element in the first row, and chooses one element from each row. The next row's choice must be in a column that is different from the previous row's column by at most one.
Example 1:
Input: [[1,2,3],[4,5,6],[7,8,9]]
Output: 12
Explanation:
The possible falling paths are:
[1,4,7], [1,4,8], [1,5,7], [1,5,8], [1,5,9]
[2,4,7], [2,4,8], [2,5,7], [2,5,8], [2,5,9], [2,6,8], [2,6,9]
[3,5,7], [3,5,8], [3,5,9], [3,6,8], [3,6,9]
The falling path with the smallest sum is [1,4,7], so the answer is 12.
Note:
1 <= A.length == A[0].length <= 100
-100 <= A[i][j] <= 100
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-falling-path-sum
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路:
1. dp[i][j]表示顶到(i,j)的最小下降和
2. 当在最左列,因为只能与之前选的差一列,所以最左列可加的值只有(上,右上);
3. 当在最右列,最右列有两种情况(上,左上);
4. 当都不是时,有(左上,右上,上)
5. 最终答案在最后一行,是其中的最小值
class Solution {
public:
int minFallingPathSum(vector<vector<int>>& A) {
int row = A.size();
int col = A[0].size();
int ans = 99999999;
vector<vector<int>> sum(row, vector<int>(col,-1));
for(int i = 0; i < row; i++){
for(int j = 0; j < col; j++){
sum[i][j] = A[i][j];
if(i == 0) continue;
if(j == 0){
sum[i][j] += min(sum[i-1][j], sum[i-1][j+1]);
}else if(j == col-1){
sum[i][j] += min(sum[i-1][j], sum[i-1][j-1]);
}else{
sum[i][j] += min(sum[i-1][j+1], min(sum[i-1][j-1], sum[i-1][j]));
}
}
}
for(int i = 0; i < col; i++){
ans = min(ans, sum[row-1][i]);
}
return ans;
}
};