给定四条线段,每条线段的端点坐标为一个坐标。我们需要判断这四条线段是否构成一个矩形。
示例:
输入:segments[] = [(4, 2), (7, 5),
(2, 4),(4, 2),
(2, 4),(5, 7),
(5, 7),(7, 5)]
输出:是
给定这些线段,制作一个长度为 3X2 的矩形。
输入:segment[] = [(7, 0), (10, 0),
(7,0),(7,3),
(7, 3),(10, 2),
(10,2),(10,0)]
输出:否
这些部分不能组成矩形。
如果您喜欢此文章,请收藏、点赞、评论,谢谢,祝您快乐每一天。
上述示例如下图所示。

这个问题主要是如何检查给定的四个点是否形成正方形:
JavaScript 检查给定的四个点是否形成正方形:https://blog.youkuaiyun.com/hefeng_aspnet/article/details/149929118
C# 检查给定的四个点是否形成正方形:https://blog.youkuaiyun.com/hefeng_aspnet/article/details/149929017
Python 检查给定的四个点是否形成正方形:https://blog.youkuaiyun.com/hefeng_aspnet/article/details/149928893
Java 检查给定的四个点是否形成正方形:https://blog.youkuaiyun.com/hefeng_aspnet/article/details/149928798
C++ 检查给定的四个点是否形成正方形:https://blog.youkuaiyun.com/hefeng_aspnet/article/details/149928227
我们可以利用矩形的性质来解决这个问题。首先,我们检查线段的唯一端点总数,如果这些点的数量不等于4,则该线段不能构成矩形。然后,我们检查所有点对之间的距离,最多应有3个不同的距离,一个用于对角线,两个用于边。最后,我们将检查这三个距离之间的关系。对于构成矩形的线段,这些距离应满足勾股定理,因为矩形的边和对角线构成一个直角三角形。如果它们满足上述条件,则我们将由线段构成的多边形标记为矩形,否则不是。
示例代码:
// C++ program to check whether it is possible
// to make a rectangle from 4 segments
#include <bits/stdc++.h>
using namespace std;
#define N 4
// structure to represent a segment
struct Segment
{
int ax, ay;
int bx, by;
};
// Utility method to return square of distance
// between two points
int getDis(pair<int, int> a, pair<int, int> b)
{
return (a.first - b.first)*(a.first - b.first) +
(a.second - b.second)*(a.second - b.second);
}
// method returns true if line Segments make
// a rectangle
bool isPossibleRectangle(Segment segments[])
{
set< pair<int, int> > st;
// putting all end points in a set to
// count total unique points
for (int i = 0; i < N; i++)
{
st.insert(make_pair(segments[i].ax, segments[i].ay));
st.insert(make_pair(segments[i].bx, segments[i].by));
}
// If total unique points are not 4, then
// they can't make a rectangle
if (st.size() != 4)
return false;
// dist will store unique 'square of distances'
set<int> dist;
// calculating distance between all pair of
// end points of line segments
for (auto it1=st.begin(); it1!=st.end(); it1++)
for (auto it2=st.begin(); it2!=st.end(); it2++)
if (*it1 != *it2)
dist.insert(getDis(*it1, *it2));
// if total unique distance are more than 3,
// then line segment can't make a rectangle
if (dist.size() > 3)
return false;
// copying distance into array. Note that set maintains
// sorted order.
int distance[3];
int i = 0;
for (auto it = dist.begin(); it != dist.end(); it++)
distance[i++] = *it;
// If line seqments form a square
if (dist.size() == 2)
return (2*distance[0] == distance[1]);
// distance of sides should satisfy pythagorean
// theorem
return (distance[0] + distance[1] == distance[2]);
}
// Driver code to test above methods
int main()
{
Segment segments[] =
{
{4, 2, 7, 5},
{2, 4, 4, 2},
{2, 4, 5, 7},
{5, 7, 7, 5}
};
(isPossibleRectangle(segments))?cout << "Yes\n":cout << "No\n";
}
输出:
Yes
时间复杂度: O(n² logn)
辅助空间: O(n)
如果您喜欢此文章,请收藏、点赞、评论,谢谢,祝您快乐每一天。

被折叠的 条评论
为什么被折叠?



