给定 2D 平面中 3 个非共线点 P、Q 和 R,以及它们各自的 x 和 y 坐标,找到三角形的外心。
注意:三角形的外心是圆的中心,由三角形的三个顶点形成。请注意,三个点可以唯一地确定一个圆。
示例:
输入:P(6, 0)
Q(0, 0)
R(0, 8)
输出:三角形 PQR 的外心
是:(3, 4)
输入:P(1, 1)
Q(0, 0)
R(2, 2)
输出:找到的两条垂直平分线平行。因此,给定的点不形成三角形并且共线
给定三角形的三个点,我们可以轻松找到三角形的边。现在,我们有了三角形三边的直线方程。得到这些后,我们可以通过一个简单的属性找到三角形的外心,如下所示:
三角形的外心是三角形所有边的垂直平分线的交点。
下图很好地解释了这一点:
请注意,这里不需要找到三角形的所有三条边。找到两条边就足够了,因为我们只需使用两条垂直平分线就可以唯一地找到交点。第三条垂直平分线本身将通过如此找到的外心。
要做的事情可以分为以下几部分:
1、找到构成三角形边的两条线(比如 PQ 和 QR)。
2、找到 PQ 和 QR 的垂直平分线(分别称为线 L 和 M)。
3、找到直线 L 和 M 的交点作为给定三角形的外心。
步骤 1
参考:
JavaScript 程序寻找通过 2 个点的线 JavaScript 程序寻找通过 2 个点的线(Program to find line passing through 2 Points)_js如何判断两条线段在同一直线上-优快云博客
Python 程序寻找通过 2 个点的线 Python 程序寻找通过 2 个点的线(Program to find line passing through 2 Points)_python两点坐标确定直线方程-优快云博客
Java 程序寻找通过 2 个点的线 Java 程序寻找通过 2 个点的线(Program to find line passing through 2 Points)_java 两点确定直线-优快云博客
C# 程序寻找通过 2 个点的线 C# 程序寻找通过 2 个点的线(Program to find line passing through 2 Points)_计算两个点 画线 c#-优快云博客
C++ 程序寻找通过 2 个点的线 C++ 程序寻找通过 2 个点的线(Program to find line passing through 2 Points)_两点式直线方程 c++-优快云博客
步骤 2
让 PQ 表示为 ax + by = c
垂直于此线的线表示为 -bx + ay = d,其中 d 为某个。
但是,我们对垂直平分线感兴趣。因此,我们找到 P 和 Q 的中点,并将该值放入标准方程中,我们得到 d 的值。
同样,我们对 QR 重复该过程。
d = -bx + ay
其中,x = (x p + x q )/2
且 y = (y p + y q )/2
步骤 3
参考:
c++ 两线交点计算程序 c++ 两线交点计算程序(Program for Point of Intersection of Two Lines)-优快云博客
Java 两线交点计算程序 Java 两线交点计算程序(Program for Point of Intersection of Two Lines)-优快云博客
Python 两线交点计算程序 Python 两线交点计算程序(Program for Point of Intersection of Two Lines)-优快云博客
c# 两线交点计算程序 C# 两线交点计算程序(Program for Point of Intersection of Two Lines)_单片机计算两线段交点-优快云博客
Javascript 两线交点计算程序 Javascript 两线交点计算程序(Program for Point of Intersection of Two Lines)-优快云博客
示例代码:
# Python3 program to find the CIRCUMCENTER of a
# triangle
# This pair is used to store the X and Y
# coordinate of a point respectively
# define pair<double, double>
# Function to find the line given two points
def lineFromPoints(P, Q, a, b, c):
a = Q[1] - P[1]
b = P[0] - Q[0]
c = a * (P[0]) + b * (P[1])
return a, b, c
# Function which converts the input line to its
# perpendicular bisector. It also inputs the points
# whose mid-point lies on the bisector
def perpendicularBisectorFromLine(P, Q, a, b, c):
mid_point = [(P[0] + Q[0])//2, (P[1] + Q[1])//2]
# c = -bx + ay
c = -b * (mid_point[0]) + a * (mid_point[1])
temp = a
a = -b
b = temp
return a, b, c
# Returns the intersection point of two lines
def lineLineIntersection(a1, b1, c1, a2, b2, c2):
determinant = a1 * b2 - a2 * b1
if (determinant == 0):
# The lines are parallel. This is simplified
# by returning a pair of (10.0)**19
return [(10.0)**19, (10.0)**19]
else:
x = (b2 * c1 - b1 * c2)//determinant
y = (a1 * c2 - a2 * c1)//determinant
return [x, y]
def findCircumCenter(P, Q, R):
# Line PQ is represented as ax + by = c
a, b, c = 0.0, 0.0, 0.0
a, b, c = lineFromPoints(P, Q, a, b, c)
# Line QR is represented as ex + fy = g
e, f, g = 0.0, 0.0, 0.0
e, f, g = lineFromPoints(Q, R, e, f, g)
# Converting lines PQ and QR to perpendicular
# vbisectors. After this, L = ax + by = c
# M = ex + fy = g
a, b, c = perpendicularBisectorFromLine(P, Q, a, b, c)
e, f, g = perpendicularBisectorFromLine(Q, R, e, f, g)
# The point of intersection of L and M gives
# the circumcenter
circumcenter = lineLineIntersection(a, b, c, e, f, g)
if (circumcenter[0] == (10.0)**19 and circumcenter[1] == (10.0)**19):
print("The two perpendicular bisectors found come parallel")
print("Thus, the given points do not form a triangle and are collinear")
else:
print("The circumcenter of the triangle PQR is: ", end="")
print("(", circumcenter[0], ",", circumcenter[1], ")")
# Driver code.
if __name__ == '__main__':
P = [6, 0]
Q = [0, 0]
R = [0, 8]
findCircumCenter(P, Q, R)
# This code is contributed by mohit kumar 29
输出:
三角形 PQR 的外心是:(3,4)
时间复杂度:O(1),因为执行常量操作
辅助空间: O(1)
如果您喜欢此文章,请收藏、点赞、评论,谢谢,祝您快乐每一天。