本文只是介绍一下tensorflow object detection模块的安装与使用。
1、下载tensorflow 的models模块https://github.com/tensorflow/models.git
2、编译Protobuf库,在object_detection同级目录下打开终端运行:
protoc object_detection/protos/*.proto --python_out=.
3、在.bashrc加入环境变量
export PYTHONPATH=$PYTHONPATH:"/home/han/models/research:/home/han/models/research/slim"
然后source ~/.bashrc
4、在object_detection同级目录下检测是否成功
python object_detection/builders/model_builder_test.py
5、数据预处理,将数据转为TFRecord格式,这里测试采用的VOC2012数据集。将数据集解压到/home/han/DataSets中
采用如下命令:
训练集
python object_detection/dataset_tools/create_pascal_tf_record.py --label_map_path=object_detection/data/pascal_label_map.pbtxt --data_dir=/home/han/DataSets/VOCdevkit-2012 --year=VOC2012 --set=train --output_path=/home/han/DataSets/pascal_train.record
验证集
python object_detection/dataset_tools/create_pascal_tf_record.py --label_map_path=object_detection/data/pascal_label_map.pbtxt --data_dir=/home/han/DataSets/VOCdevkit-2012 --year=VOC2012 --set=val --output_path=/home/han/DataSets/pascal_val.record
6、在object_detection文件夹下新建文件夹train2012,将生成的pascal_train.record和pacal_val.record放在此文件夹下,同时将data/pascal_label_map.pbtxt文件拷贝到train2012
7、新建trainmodels文件夹,解压下载的ssd_mobilenet_v1_coco_11_06_2017.tar.gz,将里面的model.ckpt*的三个文件拷贝到trainmodels。
将文件object_detection/samples/configs/ssd_mobilenet_v1_pets.config复制到trainmodels,打开做如下修改:
(1)num_classes:修改为自己的classes num ,这里为20
(2)将所有PATH_TO_BE_CONFIGURED的地方类比修改为自己之前设置的路径(5处),按照自己的路径修改即可
# SSD with Mobilenet v1, configured for Oxford-IIIT Pets Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model {
ssd {
num_classes: 20
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
}
}
similarity_calculator {
iou_similarity {
}
}
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
}
}
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
box_predictor {
convolutional_box_predictor {
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 1
box_code_size: 4
apply_sigmoid_to_scores: false
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
}
feature_extractor {
type: 'ssd_mobilenet_v1'
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid {
anchorwise_output: true
}
}
localization_loss {
weighted_smooth_l1 {
anchorwise_output: true
}
}
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.99
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 0
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
batch_size: 24
optimizer {
rms_prop_optimizer: {
learning_rate: {
exponential_decay_learning_rate {
initial_learning_rate: 0.004
decay_steps: 800720
decay_factor: 0.95
}
}
momentum_optimizer_value: 0.9
decay: 0.9
epsilon: 1.0
}
}
fine_tune_checkpoint: "/home/han/models/research/object_detection/trainmodels/model.ckpt"
from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "/home/han/models/research/object_detection/train2012/pascal_train.record"
}
label_map_path: "/home/han/models/research/object_detection/train2012/pascal_label_map.pbtxt"
}
eval_config: {
num_examples: 2000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
}
eval_input_reader: {
tf_record_input_reader {
input_path: "/home/han/models/research/object_detection/train2012/pascal_val.record"
}
label_map_path: "/home/han/models/research/object_detection/train2012/pascal_label_map.pbtxt"
shuffle: false
num_readers: 1
}
8、在object_detection目录下执行如下命令
python train.py --train_dir=train2012 --pipeline_config_path=trainmodels/ssd_mobilenet_v1_pets.config
9、生成pb文件
新建一个pb文件夹,将train2012文件夹下选择如下文件放到pb文件夹内
checkpoint
model.ckpt.data-00000-of-00001
model.ckpt.index
model.ckpt.meta
去掉ckpt后面的数字
建立一个sh 脚本
#!/bin/bash
CONFIG_PATH=./trainmodels/ssd_mobilenet_v1_pets.config
MODEL_PATH=./pb/model.ckpt
SAVE_DIR=./pb
python export_inference_graph.py \
--pipeline_config_path ${CONFIG_PATH} \
--trained_checkpoint_prefix ${MODEL_PATH} \
--output_directory ${SAVE_DIR}