用python提取图片轮廓细节
import math
import numpy as np
import matplotlib.pyplot as plt
# 生成高斯核
def gaussian_create():
sigma1 = sigma2 = 1
gaussian_sum = 0
g = np.zeros([3, 3])
for i in range(3):
for j in range(3):
g[i, j] = math.exp(-1 / 2 * (np.square(i - 1) / np.square(sigma1)
+ (np.square(j - 1) / np.square(sigma2)))) / (
2 * math.pi * sigma1 * sigma2)
gaussian_sum = gaussian_sum + g[i, j]
g = g / gaussian_sum # 归一化
return g
# 产生灰度图
def gray_fuc(rgb):
return np.dot(rgb[..., :3], [0.299, 0.587, 0.114])
# 高斯卷积
def gaussian_blur(gray_img, g):
#gray_img:灰度图
#g:高斯核
gray_img = np.pad(gray_img, ((1, 1), (1, 1)), constant_values=0) # 填充
h, w = gray_img.shape
new_gray_img = np.zeros([h - 2, w - 2])
for i in range(h - 2):
for j in range(w - 2):
new_gray_img[i, j] = np.sum(gray_img[i:i + 3, j:j + 3] * g)
return new_gray_img
# 求高斯偏导
def partial_derivative(new_gray_img):
#new_gray_img:高斯卷积后的灰度图
new_gray_img = np.pad(new_gray_img, ((0, 1), (0, 1)), constant_values=0) # 填充
h, w = new_gray_img.shape
dx_gray = np.zeros([h - 1, w - 1]) # 用来存储x方向偏导
dy_gray = np.zeros([h - 1, w - 1]) # 用来存储y方向偏导
df_gray = np.zeros([h - 1, w - 1]) # 用来存储梯度强度
for i in range(h - 1):
for j in range(w - 1):
dx_gray[i, j] = new_gray_img[i, j + 1] - new_gray_img[i, j]
dy_gray[i, j] = new_gray_img[i + 1, j] - new_gray_img[i, j]
df_gray[i, j] = np.sqrt(np.square(dx_gray[i, j]) + np.square(dy_gray[i, j]))
return dx_gray, dy_gray, df_gray
# 非极大值抑制
def non_maximum_suppression(dx_gray, dy_gray, df_gray):
#dx_gray:x方向梯度矩阵
#dy_gray:y方向梯度矩阵
#df_gray:梯度强度矩阵
df_gray = np.pad(df_gray, ((1, 1), (1, 1)), constant_values=0) # 填充
h, w = df_gray.shape
for i in range(1, h - 1):
for j in range(1, w - 1):
if df_gray[i, j] != 0:
gx = math.fabs(dx_gray[i - 1, j - 1])
gy = math.fabs(dy_gray[i - 1, j - 1])
if gx > gy:
weight = gy / gx
grad1 = df_gray[i + 1, j]
grad2 = df_gray[i - 1, j]
if gx * gy > 0:
grad3 = df_gray[i + 1, j + 1]
grad4 = df_gray[i - 1, j - 1]
else:
grad3 = df_gray[i + 1, j - 1]
grad4 = df_gray[i - 1, j + 1]
else:
weight = gx / gy
grad1 = df_gray[i, j + 1]
grad2 = df_gray[i, j - 1]
if gx * gy > 0:
grad3 = df_gray[i + 1, j + 1]
grad4 = df_gray[i - 1, j - 1]
else:
grad3 = df_gray[i + 1, j - 1]
grad4 = df_gray[i - 1, j + 1]
t1 = weight * grad1 + (1 - weight) * grad3
t2 = weight * grad2 + (1 - weight) * grad4
if df_gray[i, j] > t1 and df_gray[i, j] > t2:
df_gray[i, j] = df_gray[i, j]
else:
df_gray[i, j] = 0
return df_gray
# 双阈值过滤
def double_threshold(df_gray, low, high):
# df_gray:梯度强度矩阵 low:低阈值 high:高阈值
h, w = df_gray.shape
for i in range(1, h - 1):
for j in range(1, w - 1):
if df_gray[i, j] < low:
df_gray[i, j] = 0
elif df_gray[i, j] > high:
df_gray[i, j] = 1
elif (df_gray[i, j - 1] > high) or (df_gray[i - 1, j - 1] > high) or (
df_gray[i + 1, j - 1] > high) or (df_gray[i - 1, j] > high) or (df_gray[i + 1, j] > high) or (
df_gray[i - 1, j + 1] > high) or (df_gray[i, j + 1] > high) or (df_gray[i + 1, j + 1] > high):
df_gray[i, j] = 1
else:
df_gray[i, j] = 0
return df_gray
if __name__ == '__main__':
# 读取图像
filepath="C:/Users/gdxiaozq/Desktop/chunjie.JPG"
img = plt.imread(filepath)
# 生成高斯核
gaussian = gaussian_create()
# 生成灰度图
gray = gray_fuc(img)
# 高斯卷积
new_gray = gaussian_blur(gray, gaussian)
# 求偏导
d = partial_derivative(new_gray)
dx = d[0]
dy = d[1]
df = d[2]
# 非极大值抑制
new_df = non_maximum_suppression(dx, dy, df)
# 双阈值过滤,并将图像转换成转化二值图
low_threshold = 0.15 * np.max(new_df)
high_threshold = 0.2 * np.max(new_df)
result = double_threshold(new_df, low_threshold, high_threshold)
# 输出图像
plt.imshow(result, cmap="gray")
plt.axis("off")
plt.show()
处理效果
细节
上述代码中采用的双阈值过滤函数,是判断弱边周围是否存在强边,来进而确定该弱边是否是我们所需要的边,是否进行滤除。该方法的缺陷:
强边为H,其上有一点a与弱边相连。该弱边为L,其上有一点b和一点c,b点和a点相连。
如果,在判断弱边是否滤除的时候,先判断b点,后判断c点,得知b点和a点相连,b点设为1值保留,c点和b点相连,因此c点也设为1值保留
如果,先判断c点,后判断b点,那么得出的结论是:c点周围没有1值,丢弃。这将导致我们丢失掉我们想要的点
因此改变双阈值过滤函数的算法思想,判断强边周围是否存在弱边,即通过强边延伸弱边。这样可以使我们提取到的边更加的完整。
# 双阈值过滤
def double_threshold(dx_gray, dy_gray, df_gray, low, high):
'''
dx_gray:x方向梯度矩阵
dy_gray:y方向梯度矩阵
df_gray:梯度强度矩阵
low:低阈值
high:高阈值
'''
h, w = df_gray.shape
for i in range(1, h - 1):
for j in range(1, w - 1):
if df_gray[i, j] < low:
df_gray[i, j] = 0
elif df_gray[i, j] >= high:
df_gray[i, j] = 1
if dy_gray[i-1, j-1] * dx_gray[i-1, j-1] > 0: # dx,dy同向
if df_gray[i - 1, j + 1] > low:
df_gray[i - 1, j + 1] = high
if df_gray[i + 1, j - 1] > low:
df_gray[i + 1, j - 1] = high
if dy_gray[i-1, j-1] > dx_gray[i-1, j-1]:
if df_gray[i, j + 1] > low:
df_gray[i, j + 1] = high
if df_gray[i, j - 1] > low:
df_gray[i, j - 1] = high
else:
if df_gray[i - 1, j] > low:
df_gray[i - 1, j] = high
if df_gray[i + 1, j] > low:
df_gray[i + 1, j] = high
else:
if df_gray[i - 1, j - 1] > low:
df_gray[i - 1, j - 1] = high
if df_gray[i + 1, j + 1] > low:
df_gray[i + 1, j + 1] = high
if math.fabs(dy_gray[i-1, j-1]) > math.fabs(dx_gray[i-1, j-1]):
if df_gray[i, j + 1] > low:
df_gray[i, j + 1] = high
if df_gray[i, j - 1] > low:
df_gray[i, j - 1] = high
else:
if df_gray[i - 1, j] > low:
df_gray[i - 1, j] = high
if df_gray[i + 1, j] > low:
df_gray[i + 1, j] = high
else:
df_gray[i, j] = 0
return df_gray