12.9深度学习_经典神经网络_ Mobilenet V3

一、 Mobilenet V3

1. 网络的背景

通过之前的课程,了解并学习了MobileNetV1和MobileNetV2的相关内容和网络节点,这一章节学习MobileNetV3的相关内容,在现在比较流行一些边缘终端上,以MobileNetV3为识别网络或者为骨干网络是比较常用的,下图是MobileNetV2和MobileNet3的比较图,横坐标是在在谷歌自己做的Pixel 1手机上的延迟,纵坐标是准确率,可以看出,在相同延时下,MobileNet V3准确率更高。

img src=".\media\29c1cf52a535ae3439b159b39dfa498e.png" style="zoom:50%;" />

MobileNetV3提出了large和small两个版本(区别在于网络结构不同),paper中讲在MobileNetV3 Large在ImageNet分类任务上,较MobileNetV2,TOP1准确率提高了大约3.2%,时间减少了20%。与具有同等延迟的MobileNetV2模型相比,Mobile NetV3 Small的准确率高6.6%。

注意:TOP1指的是得到的识别结果中可能性最高的那个预测值与真实值的准确率,对应的有TOP5。

论文地址:https://arxiv.org/abs/1905.02244

2. 网络的创新

2.1 更新Block

对Block的结构进行了更新,在其中加入了SE模块,即注意力机制,以及更新了激活函数。

2.1.1 加入SE模块

在MobileNetV2中,采用了倒残差结构,该结构如下图所示:

  1. 首先会通过一个1x1卷积层来进行升维处理,在卷积后会跟有BN和ReLU6激活函数
  2. 紧接着是一个3x3大小DW卷积,卷积后面依旧会跟有BN和ReLU6激活函数
  3. 最后一个卷积层是1x1卷积,起到降维作用,注意卷积后只跟了BN结构,并没有使用ReLU6激活函数。

当stride=1且输入特征矩阵=输入特征矩阵时,还有shortcut结构。

但是MobileNetV3中的某些层中(注意不是全部),在进行最后一个1x1卷积之前,要进行一个SE模块注意力机制,MobileNetV3的倒残差如下图所示:

可以在上图中很明显的看到圈出的红框内容,这是一个SE模块,这里的SE模块是一个通道注意力机制,即对通道进行特征注意。

**它的作用是针对于得到的特征矩阵,对每一个channel进行池化处理,有多少channel,得到的池化后的一维向量就有多少个元素,接下来通过第一个全连接层,这个全连接层的节点个数=特征矩阵channel的1/4,接下来是第二个全连接层,它的节点个数=特征矩阵channel。所以SE模块可以理解为:对特征矩阵的每个channel分析出一个权重关系,它把比较重要的channel赋予更大的权重值,把不那么重要的channel赋予比较小的权重值。**该过程举例如下:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

​ 上图中,Conv1是DW卷积后得到的特征矩阵,该特征矩阵共4个channel,当然实际上多得多,这里只是简单举例,对每个channel进行平均池化操作,得到一个向量,接下来要经过第一次全连接层,全连接层的激活函数为Relu,节点个数=1,即4个channel的1/4,接下来通过第二个全连接层和h-sigmoid激活函数,该激活函数在后续会讲到,节点个数为4,最后得到的向量要与Conv1的每一个元素进行相乘,例如Conv1左上角的0.2,与得到的第一个channel的系数0.5进行相乘,得到Conv2的左上角的0.1,以此类推,就完成了SE模块的功能。

2.1.2 更新了激活函数

​ 在新的Block结构中,更新了激活函数,在下图中的红框内可以看到,激活函数用了NL进行表示,NL指的是非线性激活函数,在不同的层中,使用了不同的激活函数,所以只是用了NL进行表示具体哪一层用了什么激活函数,会在网络的结构中指出。

​ 在MobileNetV2中,使用的几乎都是Relu6激活函数,但是在很多网络中,使用的是swish x激活函数,swish x激活函数就是x乘以sigmoid激活函数,图像如下图右侧图的虚线所示,它的公式是:

s w i s h x = x ⋅ σ ( x ) swish x=x \cdot \sigma(x) sw

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值