ZOJ 3203 Light Bulb (三分)

本文介绍了一种利用三角形相似原理计算最大阴影长度的方法,并通过三分法找到最佳解。给出具体实现代码。

 

 

Compared to wildleopard's wealthiness, his brother mildleopard is rather poor. His house is narrow and he has only one light bulb in his house. Every night, he is wandering in his incommodious house, thinking of how to earn more money. One day, he found that the length of his shadow was changing from time to time while walking between the light bulb and the wall of his house. A sudden thought ran through his mind and he wanted to know the maximum length of his shadow.

Input

The first line of the input contains an integer T (T <= 100), indicating the number of cases.

Each test case contains three real numbers H, h and D in one line. H is the height of the light bulb while h is the height of mildleopard. D is distance between the light bulb and the wall. All numbers are in range from 10-2 to 103, both inclusive, and H - h >= 10-2.

Output

For each test case, output the maximum length of mildleopard's shadow in one line, accurate up to three decimal places..

Sample Input

 

3
2 1 0.5
2 0.5 3
4 3 4

 

Sample Output

 

1.000
0.750
4.000

 

这题的关键是写出一个等式,这里用三角形的相似来得出一个等式 我们假设地下的影子的长度为 X ,这里有两个相似的直角三角形,他们的直角边的比值是   (H-L) / D = (h-L)/ x  等式化简有   X = D*(h-L) / (H-L)    ,  影子的全部长度为地上的长度加上墙上的长度L  ,在上式两边同时加上 L  有   Y = X + L =  D*(h-L) / (H-L) + L   这里的等式的未知数就是L ,L (墙上的长度)的范围肯定是 0 到 h  ,那么,通过三分法求出L的值,即可得出答案;代码如下:

 

#include<iostream>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<time.h>
#include<algorithm>
#include<cmath>
#include<stack>
#include<list>
#include<queue>
#include<map>
#define E exp(1)
#define PI acos(-1)
#define mod (ll)(1e9+9)
#define INF 0x3f3f3f3f;
#define MAX 40000
//#define _CRT_SECURE_NO_WARNINGS
//#define LOCAL
using namespace std;

typedef long long ll;
typedef long double lb;



int main(void)
{
#ifdef LOCAL
	freopen("data.in.txt", "r", stdin);
	freopen("data.out.txt", "w", stdout);
#endif
	int t;
	double H, h, D;
	while (scanf("%d", &t) != EOF) {
		for (int i = 1; i <= t; ++i) {
			scanf("%lf%lf%lf", &H, &h, &D);
			double le, ri, lmid, rmid, tmp_1, tmp_2;
			le = 0, ri = h;
			while (fabs(ri - le) > 1e-8) {
				lmid = (ri + le) / 2;
				rmid = (lmid + ri) / 2;
				tmp_1 = D*(h - lmid) / (H - lmid) + lmid;
				tmp_2 = D * (h - rmid) / (H - rmid) + rmid;
				if (tmp_1 > tmp_2) ri = rmid;
				else le = lmid;
			}
			double x = (ri + le) / 2;
			double res = D * (h - x) / (H - x) + x;
			double tmp = max(D * h / H, h);
			res = max(tmp, res);
			printf("%.3f\n", res);
		}
	}
	//	end = clock();
	//	cout << "using tmie:" << (double)(end - start) / CLOCKS_PER_SEC * (1000) << "ms" << endl;

	//system("pause");
	return 0;
}

 

 

 

【多变量输入超前多步预测】基于CNN-BiLSTM的光伏功率预测研究(Matlab代码实现)内容概要:本文介绍了基于CNN-BiLSTM模型的多变量输入超前多步光伏功率预测方法,并提供了Matlab代码实现。该研究结合卷积神经网络(CNN)强大的特征提取能力与双向长短期记忆网络(BiLSTM)对时间序列前后依赖关系的捕捉能力,构建了一个高效的深度学习预测模型。模型输入包含多个影响光伏发电的气象与环境变量,能够实现对未来多个时间步长的光伏功率进行精确预测,适用于复杂多变的实际应用场景。文中详细阐述了数据预处理、模型结构设计、训练流程及实验验证过程,展示了该方法相较于传统模型在预测精度和稳定性方面的优势。; 适合人群:具备一定机器学习和深度学习基础,熟悉Matlab编程,从事新能源预测、电力系统分析或相关领域研究的研发人员与高校研究生。; 使用场景及目标:①应用于光伏电站功率预测系统,提升电网调度的准确性与稳定性;②为可再生能源并网管理、能量存储规划及电力市场交易提供可靠的数据支持;③作为深度学习在时间序列多步预测中的典型案例,用于科研复现与教学参考。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注数据归一化、CNN特征提取层设计、BiLSTM时序建模及多步预测策略的实现细节,同时可尝试引入更多外部变量或优化网络结构以进一步提升预测性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值