dp[x][y]表示合并[x, y]区间的石子的最小花费,将区间长度递增枚举即可。
AC代码:
#include<cstdio>
#include<algorithm>
using namespace std;
const int inf = 1 << 30;
const int maxn = 200 + 5;
int dp[maxn][maxn], a[maxn], sum[maxn];
int solve(int n){
for(int i = 1; i < n; ++i) dp[i][i] = 0;
for(int i = 2; i <= n; ++i)
for(int j = 1; j <= n - i + 1; ++j){
int x = j, y = j + i - 1;
dp[x][y] = inf;
for(int k = j; k < y; ++k){
dp[x][y] = min((dp[x][k] + dp[k + 1][y]) + sum[y] - sum[x - 1], dp[x][y]);
}
}
return dp[1][n];
}
int main(){
int n;
while(scanf("%d", &n) == 1){
sum[0] = 0;
for(int i = 1; i <= n; ++i) {
scanf("%d", &a[i]);
sum[i] = sum[i - 1] + a[i];
}
printf("%d\n", solve(n));
}
return 0;
}
如有不当之处欢迎指出!