8 概率机器人 Probabilistic Robotics 直方图滤波 离散贝叶斯滤波

本文介绍了概率机器人中的直方图滤波技术,它是离散贝叶斯滤波在连续状态下的实现。直方图滤波通过将连续状态分解并使用离散贝叶斯滤波进行近似。文中详细探讨了分解技术、直方图滤波算法,并通过自动驾驶定位的实例展示了滤波过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 前言

  • 直方图滤波适用于非线性滤波,是非参数滤波的一种
  • 直方图滤波是离散贝叶斯滤波在连续状态下的实现
    • 离散贝叶斯滤波:离散状态
    • 直方图滤波:连续状态
  • 直方图滤波的中心思想:将连续状态分段分解,在对每段做近似,再用离散贝叶斯滤波
    • 直方图滤波 = 离散分解 + 离散贝叶斯滤波
    • 离散分解有很大学问,不同的分段方法对滤波效果影响很大
      • 细分:精度高,计算量大
      • 粗分:精度低,计算量小
    • 理想的离散分解:非线性弱则粗分,非线性强则细分

2 离散贝叶斯滤波算法

  • 这里介绍离散贝叶斯滤波算法
  • 离散贝叶斯滤波与贝叶斯滤波很相似,只不过前者用在离散状态
  • 先给大家回顾一下贝叶斯滤波流程:
    • 大家看到求置信度用到的是积分

在这里插入图片描述

  • 离散贝叶斯滤波算法
    • 应用于有限状态的情景
    • 把贝叶斯滤波的积分改成求和就是离散贝叶斯算法了

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NyUmtArV-1602641479136)(4604A7D6747E495E809A3558DA4181F6)]

3 直方图滤波

  • 直方图滤波 = 离散分解 + 离散贝叶斯滤波

3.1 分解技术

  • 将连续状态 X t X_t Xt进行分解:
    d o m ( X t ) = x 1 , t ∪ x 2 , t ∪ ⋯ x K , t x i , t ∩ x k , t = ∅ ⋃ k x k , t = d o m ( X t ) dom(X_t) = x_{1,t} \cup x_{2,t} \cup \cdots x_{K,t}\\ x_{i,t} \cap x_{k,t} = \varnothing \\ \bigcup_k x_{k,t} = dom(X_t) dom(Xt)=x1,tx2,txK,txi,txk,t=kxk,t=dom(Xt)
  • 对状态分解主要有两种思想:静态,动态
    • 静态:固定粗细的分解方法,不随变换函数的非线性程度所改变
    • 动态:分的粗细程度自适应变换函数
  • 动态分解要优于静态分解,动态分解的方法很多,这里不做介绍,给大家看一下动态与静态的对比:
    • 右下图是原始状态, x x x服从正态分布的连续状态,对它进行离散分解
    • 右上图是非线性变换函数 y = g ( x ) y = g(x) y=g(x)
    • 左上图是静态分解,分解间隔是定值,近似效果较差
    • 中上图是动态分解,该分解的粗细程度与状态转移函数 y = g ( x ) y = g(x) y=g(x)的非线性程度有关,近似效果较好

在这里插入图片描述

3.2 直方图滤波介绍

  • 上述介绍完对状态进行分解的方法,这里介绍分解后的计算过程
  • 我们分解了很多区间,那么每一段的概率为 p k , t p_{k,t} pk,t,那么该区间概率密度:
    p ( x t ) = p k , t ∣ x k , t ∣ p(x_t) = \frac{p_{k,t}}{|x_{k,t}|} p(xt)=xk,tpk,t
  • 再在每一段区内选一个代表点 x ^ k , t \hat{x}_{k,t} x^k,t:
    x ^ k , t = ∣ x k , t ∣ − 1 ∫ x k , t x t d x t \hat{x}_{k,t} = |x_{k,t}|^{-1} \int_{x_{k,t}} x_t d x_t x^k,t=xk,t1xk,txtdxt
  • 有了代表点就可以近似测量和状态转移概率,具体为什么这样近似看下面重要公式推导部分
    p ( z t ∣ x k , t ) ≈ p ( z t ∣ x ^ k , t ) p ( x k , t ∣ u t , x i , t − 1 ) ≈ η ∣ x k , t ∣ p ( x ^ k , t ∣ u t , x ^ i , t − 1 ) p(z_t | x_{k,t}) \approx p(z_t | \hat{x}_{k,t}) \\ p(x_{k,t} | u_t, x_{i,t-1}) \approx \eta |x_{k,t}| p(\hat{x}_{k,t} | u_t, \hat{x}_{i,t-1}) p(ztxk,t)p(ztx^k,t)p(xk,tut,xi,t1)ηxk,tp(x^k,tut,x^i,t1)
  • 所以离散贝叶斯滤波中两个公式可以表示为:
    l i n e 3 : p ˉ k , t = ∑ i p ( X t = x k ∣ u t , X t − 1 = x i ) p i , t − 1 = ∑ i η ∣ x k , t ∣ p ( X t = x ^ k , t ∣ u t , X t − 1 = x ^ i , t − 1 ) p i , t − 1 l i n e 4 : p k , t = η p ( z t ∣ X t = x k ) p ˉ k , t = η p ( z t ∣ X t = x ^ k , t ) p ˉ k , t \begin{aligned} line 3: \bar{p}_{k,t} &= \sum_i p(X_t=x_k| u_t, X_{t-1} = x_i)p_{i,t-1}\\ &= \sum_i \eta |x_{k,t}| p(X_t=\hat{x}_{k,t} | u_t, X_{t-1} = \hat{x}_{i,t-1}) p_{i,t-1}\\ line 4: p_{k,t} &= \eta p(z_t | X_t = x_k) \bar{p}_{k,t}\\ &= \eta p(z_t | X_t = \hat{x}_{k,t}) \bar{p}_{k,t}\\ \end{aligned} line3:pˉk,tline4:pk,t=ip(Xt=xkut,Xt1=xi)pi,t1=iηxk,tp(Xt=x^k,tut,Xt1=x^i,t1)pi,t1=ηp(ztXt=xk)pˉk,t=ηp(ztXt=x^k,t)pˉk,t

3.3 重要公式推导

  • 测量概率近似:
    p ( z t ∣ x k , t ) = p ( z t , x k , t ) p ( x k , t ) = ∫ x k , t p ( z t , x t ) d x t ∫ x k , t p ( x t ) d x t = ∫ x k , t p ( z t ∣ x t ) p ( x t ) d x t ∫ x k , t p ( x t ) d x t = ∫ x k , t p ( z t ∣ x t ) p k , t ∣ x k , t ∣ d x t ∫ x k , t p k , t ∣ x k , t ∣ d x t = p k , t ∣ x k , t ∣ p k , t ∣ x k , t ∣ ∫ x k , t p ( z t ∣ x t ) d x t ∫ x k , t 1 d x t = ∣ x k , t ∣ − 1 ∫ x k , t p ( z t ∣ x t ) d x t ≈ ∣ x k , t ∣ − 1 ∫ x k , t p ( z t ∣ x ^ k , t ) d x t = ∣ x k , t ∣ − 1 p ( z t ∣ x ^ k , t ) ∫ x k , t 1 d x t = ∣ x k , t ∣ − 1 p ( z t ∣ x ^ k , t ) ∣ x k , t ∣ = p ( z t ∣ x ^ k , t ) ↓ p ( z t ∣ x k , t ) ≈ p ( z t ∣ x ^ k , t ) \begin{aligned} p(z_t|x_{k,t}) & = \frac{p(z_t, x_{k,t})}{p(x_{k,t})}\\ &= \frac{\int_{x_{k,t}} p(z_t, x_t) d x_t}{\int_{x_{k,t}} p( x_t) d x_t}\\ &= \frac{\int_{x_{k,t}} p(z_t| x_t) p(x_t) d x_t}{\int_{x_{k,t}} p( x_t) d x_t}\\ &= \frac{\int_{x_{k,t}} p(z_t| x_t) \frac{p_{k,t}}{|x_{k,t}|} d x_t}{\int_{x_{k,t}} \frac{p_{k,t}}{|x_{k,t}|} d x_t}\\ &= \frac{\frac{p_{k,t}}{|x_{k,t}|}}{\frac{p_{k,t}}{|x_{k,t}|}} \frac{\int_{x_{k,t}} p(z_t| x_t) d x_t}{\int_{x_{k,t}} 1 d x_t}\\ &= |x_{k,t}|^{-1} \int_{x_{k,t}} p(z_t| x_t) d x_t\\ &\approx |x_{k,t}|^{-1} \int_{x_{k,t}} p(z_t| \hat{x}_{k,t}) d x_t\\ &= |x_{k,t}|^{-1} p(z_t| \hat{x}_{k,t}) \int_{x_{k,t}} 1 d x_t\\ &= |x_{k,t}|^{-1} p(z_t| \hat{x}_{k,t}) |x_{k,t}|\\ &= p(z_t| \hat{x}_{k,t}) \\ \end{aligned}\\ \downarrow\\ p(z_t | x_{k,t}) \approx p(z_t | \hat{x}_{k,t}) p(ztxk,t)=p(xk,t)p(zt,xk,t)=xk,tp(xt)dxtxk,tp(zt,xt)dxt=xk,tp(xt)dxtxk,tp(ztxt)p(xt)dxt=xk,txk,tpk,tdxtxk,tp(ztxt)xk,tpk,tdxt=xk,tpk,txk,tpk,txk,t1dxtxk,tp(ztxt)dxt=xk,t1xk,tp(ztxt)dxtxk,t1xk,tp(ztx^k,t)dxt=xk,t1p(ztx^k,t)xk,t1dxt=xk,t1p(ztx^k,t)xk,t=p(ztx^k,t)p(ztxk,t)p(ztx^k,t)
  • 状态转移概率近似:
    p ( x k , t ∣ u t , x i , t − 1 ) = p ( x k , t , x i , t − 1 ∣ u t ) p ( x i , t − 1 ∣ u t ) = ∫ x k , t ∫ x i , t − 1 p ( x t , x t − 1 ∣ u t ) d x t d x t − 1 ∫ x i , t − 1 p ( x t − 1 ∣ u t ) d x t = ∫ x k , t ∫ x i , t − 1 p ( x t ∣ u t , x t − 1 ) p ( x t − 1 ∣ u t ) d x t d x t − 1 ∫ x i , t − 1 p ( x t − 1 ∣ u t ) d x t ↓ p ( x t − 1 ∣ u t ) = p ( x t − 1 ) = ∫ x k , t ∫ x i , t − 1 p ( x t ∣ u t , x t − 1 ) p ( x t − 1 ) d x t d x t − 1 ∫ x i , t − 1 p ( x t − 1 ) d x t = ∫ x k , t ∫ x i , t − 1 p ( x t ∣ u t , x t − 1 ) p k , t − 1 ∣ x k , t − 1 ∣ d x t d x t − 1 ∫ x i , t − 1 p k , t − 1 ∣ x k , t − 1 ∣ d x t = ∫ x k , t ∫ x i , t − 1 p ( x t ∣ u t , x t − 1 ) d x t d x t − 1 ∫ x i , t − 1 1 d x t = ∣ x k , t − 1 ∣ − 1 ∫ x k , t ∫ x i , t − 1 p ( x t ∣ u t , x t − 1 ) d x t d x t − 1 ↓ p ( x t ∣ u t , x t − 1 ) ≈ p ( x ^ k , t ∣ u t , x ^ k , t − 1 ) ≈ η ∣ x k , t − 1 ∣ − 1 ∫ x k , t ∫ x i , t − 1 p ( x ^ k , t ∣ u t , x ^ k , t − 1 ) d x t d x t − 1 = η ∣ x k , t − 1 ∣ − 1 p ( x ^ k , t ∣ u t , x ^ k , t − 1 ) ∫ x k , t ∫ x i , t − 1 1 d x t d x t − 1 = η ∣ x k , t − 1 ∣ − 1 p ( x ^ k , t ∣ u t , x ^ k , t − 1 ) ∣ x k , t ∣ ∣ x k , t − 1 ∣ = η ∣ x k , t ∣ p ( x ^ k , t ∣ u t , x ^ k , t − 1 ) ↓ p ( x k , t ∣ u t , x i , t − 1 ) ≈ η ∣ x k , t ∣ p ( x ^ k , t ∣ u t , x ^ i , t − 1 ) \begin{aligned} p(x_{k,t} | u_t, x_{i,t-1}) &= \frac{p(x_{k,t}, x_{i,t-1} | u_t)}{p( x_{i,t-1} | u_t)}\\ &= \frac{\int_{x_{k,t}} \int_{x_{i,t-1}} p(x_{t}, x_{t-1} | u_t) d x_t d x_{t-1} }{\int_{x_{i,t-1}} p(x_{t-1} | u_t) d x_t }\\ &= \frac{\int_{x_{k,t}} \int_{x_{i,t-1}} p(x_{t}| u_t, x_{t-1} ) p(x_{t-1} | u_t ) d x_t d x_{t-1} }{\int_{x_{i,t-1}} p(x_{t-1} | u_t) d x_t }\\ & \downarrow p(x_{t-1} | u_t) = p(x_{t-1} )\\ &= \frac{\int_{x_{k,t}} \int_{x_{i,t-1}} p(x_{t}| u_t, x_{t-1} ) p(x_{t-1} ) d x_t d x_{t-1} }{\int_{x_{i,t-1}} p(x_{t-1} ) d x_t }\\ &= \frac{\int_{x_{k,t}} \int_{x_{i,t-1}} p(x_{t}| u_t, x_{t-1} ) \frac{p_{k,t-1}}{|x_{k,t-1}|} d x_t d x_{t-1} }{\int_{x_{i,t-1}} \frac{p_{k,t-1}}{|x_{k,t-1}|} d x_t }\\ &= \frac{\int_{x_{k,t}} \int_{x_{i,t-1}} p(x_{t}| u_t, x_{t-1} ) d x_t d x_{t-1} }{\int_{x_{i,t-1}} 1 d x_t }\\ &= |x_{k,t-1}|^{-1} \int_{x_{k,t}} \int_{x_{i,t-1}} p(x_{t}| u_t, x_{t-1} ) d x_t d x_{t-1}\\ & \downarrow p(x_{t}| u_t, x_{t-1} ) \approx p(\hat{x}_{k,t}| u_t, \hat{x}_{k,t-1} ) \\ &\approx \eta |x_{k,t-1}|^{-1} \int_{x_{k,t}} \int_{x_{i,t-1}} p(\hat{x}_{k,t}| u_t, \hat{x}_{k,t-1} ) d x_t d x_{t-1}\\ &= \eta |x_{k,t-1}|^{-1} p(\hat{x}_{k,t}| u_t, \hat{x}_{k,t-1} )\int_{x_{k,t}} \int_{x_{i,t-1}} 1 d x_t d x_{t-1}\\ &= \eta |x_{k,t-1}|^{-1} p(\hat{x}_{k,t}| u_t, \hat{x}_{k,t-1} )|x_{k,t}| |x_{k,t-1}|\\ &= \eta |x_{k,t}| p(\hat{x}_{k,t}| u_t, \hat{x}_{k,t-1} ) \end{aligned}\\ \downarrow\\ p(x_{k,t} | u_t, x_{i,t-1}) \approx \eta |x_{k,t}| p(\hat{x}_{k,t} | u_t, \hat{x}_{i,t-1}) p(xk,tut,xi,t1)=p(xi,t1ut)p(xk,t,xi,t1ut)=xi,t1p(xt1ut)dxtxk,txi,t1p(xt,xt1ut)dxtdxt1=xi,t1p(xt1ut)dxtxk,txi,t1p(xtut,xt1)p(xt1ut)dxtdxt1p(xt1ut)=p(xt1)=xi,t1p(xt1)dxtxk,txi,t1p(xtut,xt1)p(xt1)dxtdxt1=xi,t1xk,t1pk,t1dxtxk,txi,t1p(xtut,xt1)xk,t1pk,t1dxtdxt1=xi,t11dxtxk,txi,t1p(xtut,xt1)dxtdxt1=xk,t11xk,txi,t1p(xtut,xt1)dxtdxt1p(xtut,xt1)p(x^k,tut,x^k,t1)ηxk,t11xk,txi,t1p(x^k,tut,x^k,t1)dxtdxt1=ηxk,t11p(x^k,tut,x^k,t1)xk,txi,t11dxtdxt1=ηxk,t11p(x^k,tut,x^k,t1)xk,t∣∣xk,t1=ηxk,tp(x^k,tut,x^k,t1)p(xk,tut,xi,t1)ηxk,tp(x^k,tut,x^i,t1)

3.4 实例

  • 这里借鉴自动驾驶定位算法(九)-直方图滤波(Histogram Filter)定位的例子
  • 例子:1D自动驾驶定位
    • 无人驾驶汽车在一维的宽度为 5 m 5m 5m的世界重复循环
    • 因为世界是循环的,所以如果无人驾驶汽车到了最右侧,再往前走一步,它就又回到了最左侧的位置
    • 车上的传感器可以检测车辆当前所在位置的颜色
    • 传感器对颜色的检测不是 100 % 100\% 100%准确的
    • 汽车以自认为 1 m / s t e p 1m/step 1m/step的恒定速度向右运动
    • 车辆运动本身也存在误差,即向车辆发出的控制命令是向右移动2m,而实际的车辆运动结果可能是待在原地不动,可能向右移动1m,也可能向右移动3m

在这里插入图片描述

  • 数学模型:
    • 机器人只有一个状态变量:位置 X ∈ [ 0 , 5 ) X \in [0,5) X[0,5)
    • 对状态空间分解(这里采用静态分解): x 0 , t ∈ [ 0 , 1 ) , x 1 , t ∈ [ 1 , 2 ) , x 2 , t ∈ [ 2 , 3 ) , x 3 , t ∈ [ 3 , 4 ) , x 4 , t ∈ [ 4 , 5 ) x_{0,t} \in [0,1), x_{1,t} \in [1,2), x_{2,t} \in [2,3), x_{3,t} \in [3,4), x_{4,t} \in [4,5) x0,t[0,1),x1,t[1,2),x2,t[2,3),x3,t[3,4),x4,t[4,5)
    • 对每一个分段区间计算一个代表的值 x ^ 0 , t = ∣ x 0 , t ∣ − 1 ∫ x 0 , t x t d x t = 0.5 , x ^ 1 , t = 1.5 , x ^ 2 , t = 2.5 , x ^ 3 , t = 3.5 , x ^ 4 , t = 4.5 \hat{x}_{0,t} = |x_{0,t}|^{-1} \int_{x_{0,t}} x_t d x_t = 0.5, \hat{x}_{1,t} = 1.5, \hat{x}_{2,t} = 2.5, \hat{x}_{3,t} = 3.5, \hat{x}_{4,t} = 4.5 x^0,t=x0,t1x0,txtdxt=0.5,x^1,t=1.5,x^2,t=2.5,x^3,t=3.5,x^4,t=4.5
    • 车辆自认为在向右运动,每一步运动 u t = 1 m u_t=1m ut=1m,我们假设存在 5 % 5\% 5%的概率,无人驾驶汽车仍待在原地没动;存在 90 % 90\% 90%的概率车辆在向右移动 1 m 1m 1m;存在 5 % 5\% 5%的概率无人驾驶汽车在向右运动 2 m 2m 2m
      p ( x ^ t = x ∣ u t = 1 , x ^ t − 1 = x ) = 5 % p ( x ^ t = ( x + 1 )    m o d    5 ∣ u t = 1 , x ^ t − 1 = x ) = 90 % p ( x ^ t = ( x + 2 )    m o d    5 ∣ u t = 1 , x ^ t − 1 = x ) = 5 % p(\hat{x}_{t} = x|u_t=1, \hat{x}_{t-1} = x) = 5\%\\ p(\hat{x}_{t} = (x + 1)~~mod~~5 | u_t=1, \hat{x}_{t-1} = x) = 90\%\\ p(\hat{x}_{t} = (x + 2)~~mod~~5 | u_t=1, \hat{x}_{t-1} = x) = 5\% p(x^t=xut=1,x^t1=x)=5%p(x^t=(x+1)  mod  5∣ut=1,x^t1=x)=90%p(x^t=(x+2)  mod  5∣ut=1,x^t1=x)=5%
    • 汽车上的传感器有 90 % 90\% 90%的概率检测正确, 10 % 10\% 10%的概率检测错误
      p ( s e n s o r = B u l e ∣ x ^ t = 0.5 , 2.5 , 3.5 ) = 90 % p ( s e n s o r = O r a n g e ∣ x ^ t = 0.5 , 2.5 , 3.5 ) = 10 % p ( s e n s o r = B u l e ∣ x ^ t = 1.5 , 4.5 ) = 10 % p ( s e n s o r = O r a n g e ∣ x ^ t = 1.5 , 4.5 ) = 90 % p(sensor = Bule | \hat{x}_{t} = 0.5,2.5,3.5) = 90\%\\ p(sensor = Orange | \hat{x}_{t} = 0.5,2.5,3.5) = 10\%\\ p(sensor = Bule | \hat{x}_{t} = 1.5,4.5) = 10\%\\ p(sensor = Orange | \hat{x}_{t} = 1.5,4.5) = 90\% p(sensor=Bulex^t=0.5,2.5,3.5)=90%p(sensor=Orangex^t=0.5,2.5,3.5)=10%p(sensor=Bulex^t=1.5,4.5)=10%p(sensor=Orangex^t=1.5,4.5)=90%
  • 利用直方图滤波进行车辆定位:
    • 我们用5维向量来描述 t t t时刻车辆在 c c c的概率
      p t = ( p 0 , t , p 1 , t , p 2 , t , p 3 , t , p 4 , t ) = ( p ( x ^ 0 , t ) , p ( x ^ 1 , t ) , p ( x ^ 2 , t ) , p ( x ^ 3 , t ) , p ( x ^ 4 , t ) ) \begin{aligned} p_{t} &= (p_{0,t}, p_{1,t}, p_{2,t}, p_{3,t}, p_{4,t})\\ &= (p(\hat{x}_{0,t}), p(\hat{x}_{1,t}), p(\hat{x}_{2,t}), p(\hat{x}_{3,t}), p(\hat{x}_{4,t})) \end{aligned} pt=(p0,t,p1,t,p2,t,p3,t,p4,t)=(p(x^0,t),p(x^1,t),p(x^2,t),p(x^3,t),p(x^4,t))
    • 过程:无人驾驶汽车对自己所在位置一无所知,假设它连续三次【向右走一步】-【观测】,三次观测结果分别是orange、blue、orange
  • 在计算之前大家想一想连续3次分别检测出orange、blue、orange后应该在哪个位置?其实大家对照上图不难看出应该在 x ^ 1 , t \hat{x}_{1,t} x^1,t
  • 下面我们一步步计算汽车是如何通过【运动】-【观测】过程逐步确认自己的位置在在 x ^ 1 , t \hat{x}_{1,t} x^1,t
    • t = 0 t=0 t=0: 没有任何先验知识,车辆对自己在哪一无所知,所以各个位置的置信度相等
      p 0 = ( p 0 , 0 , p 1 , 0 , p 2 , 0 , p 3 , 0 , p 4 , 0 ) = ( p ( x ^ 0 , 0 ) , p ( x ^ 1 , 0 ) , p ( x ^ 2 , 0 ) , p ( x ^ 3 , 0 ) , p ( x ^ 4 , 0 ) ) = ( 0.2 , 0.2 , 0.2 , 0.2 , 0.2 ) \begin{aligned} p_0 &= (p_{0,0}, p_{1,0}, p_{2,0}, p_{3,0}, p_{4,0})\\ &= (p(\hat{x}_{0,0}), p(\hat{x}_{1,0}), p(\hat{x}_{2,0}), p(\hat{x}_{3,0}), p(\hat{x}_{4,0}))\\ &= (0.2, 0.2, 0.2, 0.2, 0.2) \end{aligned} p0=(p0,0,p1,0,p2,0,p3,0,p4,0)=(p(x^0,0),p(x^1,0),p(x^2,0),p(x^3,0),p(x^4,0))=(0.2,0.2,0.2,0.2,0.2)
    • t = 1 t=1 t=1: 向右走 1 m 1m 1m
      l i n e 3 : p ˉ k , 1 = ∑ i η ∣ x k , 1 ∣ p ( X 1 = x ^ k , 1 ∣ u 1 = 1 , X 0 = x ^ i , 0 ) p i , 0 = η ( ( 0.05 , 0.9 , 0.05 , 0 , 0 ) ∗ 0.2 + ( 0 , 0.05 , 0.9 , 0.05 , 0 ) ∗ 0.2 + ( 0 , 0 , 0.05 , 0.9 , 0.05 ) ∗ 0.2 + ( 0.05 , 0 , 0 , 0.05 , 0.9 ) ∗ 0.2 + ( 0.9 , 0.05 , 0 , 0 , 0.05 ) ∗ 0.2 ) = η ( 0.2 , 0.2 , 0.2 , 0.2 , 0.2 ) = ( 0.2 , 0.2 , 0.2 , 0.2 , 0.2 ) \begin{aligned} line 3: \bar{p}_{k,1} = &\sum_i \eta |x_{k,1}| p(X_1=\hat{x}_{k,1} | u_1 = 1, X_{0} = \hat{x}_{i,0}) p_{i,0}\\ =& \eta ( (0.05, 0.9, 0.05, 0, 0)*0.2 + (0, 0.05, 0.9, 0.05, 0)*0.2 \\ &+(0, 0, 0.05, 0.9, 0.05)*0.2 + (0.05, 0, 0, 0.05, 0.9)*0.2\\ &+ (0.9, 0.05, 0, 0, 0.05)*0.2)\\ = & \eta (0.2, 0.2, 0.2, 0.2, 0.2)\\ = & (0.2, 0.2, 0.2, 0.2, 0.2)\\ \end{aligned} line3:pˉk,1====iηxk,1p(X1=x^k,1u1=1,X0=x^i,0)pi,0η((0.05,0.9,0.05,0,0)0.2+(0,0.05,0.9,0.05,0)0.2+(0,0,0.05,0.9,0.05)0.2+(0.05,0,0,0.05,0.9)0.2+(0.9,0.05,0,0,0.05)0.2)η(0.2,0.2,0.2,0.2,0.2)(0.2,0.2,0.2,0.2,0.2)
    • t = 1 t=1 t=1: 检测到环境颜色为orange
      l i n e 4 : p k , 1 = η p ( z 1 = O r a n g e ∣ X 1 = x ^ k , 1 ) p ˉ k , 1 = η ( 0.1 , 0.9 , 0.1 , 0.1 , 0.9 ) ∗ ( 0.2 , 0.2 , 0.2 , 0.2 , 0.2 ) = η ( 0.02 , 0.18 , 0.02 , 0.02 , 0.18 ) = ( 0.04762 , 0.42857 , 0.04762 , 0.04762 , 0.42857 ) \begin{aligned} line 4: p_{k,1} = &\eta p(z_1=Orange | X_1 = \hat{x}_{k,1}) \bar{p}_{k,1}\\ = & \eta (0.1, 0.9, 0.1, 0.1, 0.9) * (0.2, 0.2, 0.2, 0.2, 0.2)\\ = &\eta (0.02, 0.18, 0.02, 0.02, 0.18)\\ = & (0.04762, 0.42857, 0.04762, 0.04762, 0.42857) \end{aligned} line4:pk,1====ηp(z1=OrangeX1=x^k,1)pˉk,1η(0.1,0.9,0.1,0.1,0.9)(0.2,0.2,0.2,0.2,0.2)η(0.02,0.18,0.02,0.02,0.18)(0.04762,0.42857,0.04762,0.04762,0.42857)
    • t = 2 t=2 t=2: 向右走 1 m 1m 1m
      l i n e 3 : p ˉ k , 2 = ∑ i η ∣ x k , 2 ∣ p ( X 2 = x ^ k , 2 ∣ u 2 = 1 , X 1 = x ^ i , 1 ) p i , 1 = η ( ( 0.05 , 0.9 , 0.05 , 0 , 0 ) ∗ 0.04762 + ( 0 , 0.05 , 0.9 , 0.05 , 0 ) ∗ 0.42857 + ( 0 , 0 , 0.05 , 0.9 , 0.05 ) ∗ 0.04762 + ( 0.05 , 0 , 0 , 0.05 , 0.9 ) ∗ 0.04762 + ( 0.9 , 0.05 , 0 , 0 , 0.05 ) ∗ 0.42857 ) = η ( 0.39048 , 0.08571 , 0.39048 , 0.06667 , 0.06667 ) = ( 0.39048 , 0.08571 , 0.39048 , 0.06667 , 0.06667 ) \begin{aligned} line 3: \bar{p}_{k,2} = &\sum_i \eta |x_{k,2}| p(X_2=\hat{x}_{k,2} | u_2 = 1, X_{1} = \hat{x}_{i,1}) p_{i,1}\\ =& \eta ( (0.05, 0.9, 0.05, 0, 0)*0.04762 + (0, 0.05, 0.9, 0.05, 0)*0.42857 \\ &+(0, 0, 0.05, 0.9, 0.05)*0.04762 + (0.05, 0, 0, 0.05, 0.9)*0.04762\\ &+ (0.9, 0.05, 0, 0, 0.05)*0.42857)\\ = & \eta (0.39048, 0.08571, 0.39048, 0.06667, 0.06667)\\ = & (0.39048, 0.08571, 0.39048, 0.06667, 0.06667)\\ \end{aligned} line3:pˉk,2====iηxk,2p(X2=x^k,2u2=1,X1=x^i,1)pi,1η((0.05,0.9,0.05,0,0)0.04762+(0,0.05,0.9,0.05,0)0.42857+(0,0,0.05,0.9,0.05)0.04762+(0.05,0,0,0.05,0.9)0.04762+(0.9,0.05,0,0,0.05)0.42857)η(0.39048,0.08571,0.39048,0.06667,0.06667)(0.39048,0.08571,0.39048,0.06667,0.06667)
    • t = 2 t=2 t=2: 检测到环境颜色为blue
      l i n e 4 : p k , 2 = η p ( z 2 = O r a n g e ∣ X 2 = x ^ k , 2 ) p ˉ k , 2 = η ( 0.1 , 0.9 , 0.1 , 0.1 , 0.9 ) ∗ ( 0.39048 , 0.08571 , 0.39048 , 0.06667 , 0.06667 ) = ( 0.45165 , 0.01102 , 0.45165 , 0.07711 , 0.00857 ) \begin{aligned} line 4: p_{k,2} = &\eta p(z_2=Orange | X_2 = \hat{x}_{k,2}) \bar{p}_{k,2}\\ = & \eta (0.1, 0.9, 0.1, 0.1, 0.9) * (0.39048, 0.08571, 0.39048, 0.06667, 0.06667)\\ = & (0.45165, 0.01102, 0.45165, 0.07711, 0.00857) \end{aligned} line4:pk,2===ηp(z2=OrangeX2=x^k,2)pˉk,2η(0.1,0.9,0.1,0.1,0.9)(0.39048,0.08571,0.39048,0.06667,0.06667)(0.45165,0.01102,0.45165,0.07711,0.00857)
    • t = 3 t=3 t=3: 向右走 1 m 1m 1m
      l i n e 3 : p ˉ k , 3 = ∑ i η ∣ x k , 3 ∣ p ( X 3 = x ^ k , 3 ∣ u 3 = 1 , X 2 = x ^ i , 2 ) p i , 2 = η ( ( 0.05 , 0.9 , 0.05 , 0 , 0 ) ∗ 0.45165 + ( 0 , 0.05 , 0.9 , 0.05 , 0 ) ∗ 0.01102 + ( 0 , 0 , 0.05 , 0.9 , 0.05 ) ∗ 0.45165 + ( 0.05 , 0 , 0 , 0.05 , 0.9 ) ∗ 0.07711 + ( 0.9 , 0.05 , 0 , 0 , 0.05 ) ∗ 0.00857 ) = ( 0.03415 , 0.40747 , 0.05508 , 0.41089 , 0.09241 ) \begin{aligned} line 3: \bar{p}_{k,3} = &\sum_i \eta |x_{k,3}| p(X_3=\hat{x}_{k,3} | u_3 = 1, X_{2} = \hat{x}_{i,2}) p_{i,2}\\ =& \eta ( (0.05, 0.9, 0.05, 0, 0)*0.45165 + (0, 0.05, 0.9, 0.05, 0)*0.01102 \\ &+(0, 0, 0.05, 0.9, 0.05)*0.45165 + (0.05, 0, 0, 0.05, 0.9)*0.07711\\ &+ (0.9, 0.05, 0, 0, 0.05)*0.00857)\\ = & (0.03415, 0.40747, 0.05508, 0.41089, 0.09241)\\ \end{aligned} line3:pˉk,3===iηxk,3p(X3=x^k,3u3=1,X2=x^i,2)pi,2η((0.05,0.9,0.05,0,0)0.45165+(0,0.05,0.9,0.05,0)0.01102+(0,0,0.05,0.9,0.05)0.45165+(0.05,0,0,0.05,0.9)0.07711+(0.9,0.05,0,0,0.05)0.00857)(0.03415,0.40747,0.05508,0.41089,0.09241)
    • t = 3 t=3 t=3: 检测到环境颜色为orange
      l i n e 4 : p k , 3 = η p ( z 3 = O r a n g e ∣ X 3 = x ^ k , 3 ) p ˉ k , 3 = η ( 0.1 , 0.9 , 0.1 , 0.1 , 0.9 ) ∗ ( 0.03415 , 0.40747 , 0.05508 , 0.41089 , 0.09241 ) = ( 0.00683 , 0.73358 , 0.01102 , 0.08219 , 0.16637 ) \begin{aligned} line 4: p_{k,3} = &\eta p(z_3=Orange | X_3 = \hat{x}_{k,3}) \bar{p}_{k,3}\\ = & \eta (0.1, 0.9, 0.1, 0.1, 0.9) * (0.03415, 0.40747, 0.05508, 0.41089, 0.09241)\\ = & (0.00683, 0.73358, 0.01102, 0.08219, 0.16637) \end{aligned} line4:pk,3===ηp(z3=OrangeX3=x^k,3)pˉk,3η(0.1,0.9,0.1,0.1,0.9)(0.03415,0.40747,0.05508,0.41089,0.09241)(0.00683,0.73358,0.01102,0.08219,0.16637)
  • 通过 p k , 3 = ( 0.00683 , 0.73358 , 0.01102 , 0.08219 , 0.16637 ) p_{k,3} = (0.00683, 0.73358, 0.01102, 0.08219, 0.16637) pk,3=(0.00683,0.73358,0.01102,0.08219,0.16637)可以看出 p ( x ^ 1 , t ) = 0.73358 p(\hat{x}_{1,t}) = 0.73358 p(x^1,t)=0.73358远大于其他位置,所以此时在 x ^ 1 , t \hat{x}_{1,t} x^1,t

4 参考文献

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值