描述
题解
给定
n
个结点和
那么我们先进行最短路求得最短路径,然后将最短路径添加到网络流系统中,求得最大流,也就是最小割。酱紫结果就出来了哦!!!模版题~~~
代码
#include <iostream>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
const int MAXN = 2005;
const int INF = 0x3f3f3f3f;
struct node
{
int v, w;
node(int v_, int w_) : v(v_), w(w_) {};
};
int n, m, vs, vt;
int s, t;
int dis[MAXN];
int vis[MAXN];
vector<node> e[MAXN];
void spfa()
{
memset(vis, 0, sizeof(vis));
memset(dis, 0x3f, sizeof(dis));
dis[s] = 0;
queue<int> q;
q.push(s);
while (!q.empty())
{
int u = q.front();
q.pop();
vis[u] = 0;
for (int i = 0; i < e[u].size(); i++)
{
int v = e[u][i].v;
if (dis[v] > dis[u] + 1)
{
dis[v] = dis[u] + 1;
if (!vis[v])
{
q.push(v);
}
vis[v] = 1;
}
}
}
}
struct edge
{
int from, to, cap, flow;
edge(int u, int v, int c, int f) : from(u), to(v), cap(c), flow(f) {}
};
struct Dinic
{
int s, t;
vector<edge> edges; // 边数的两倍
vector<int> G[MAXN]; // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[MAXN]; // BFS使用
int dis[MAXN]; // 从起点到i的距离
int cur[MAXN]; // 当前弧下标
void init()
{
for (int i = 0; i <= n + 1; i++)
{
G[i].clear();
}
edges.clear();
}
void addEdge(int from, int to, int cap)
{
edges.push_back(edge(from, to, cap, 0));
edges.push_back(edge(to, from, 0, 0));
int sz = (int)edges.size();
G[from].push_back(sz - 2);
G[to].push_back(sz - 1);
}
bool bfs()
{
memset(vis, 0, sizeof(vis));
queue<int> q;
q.push(s);
dis[s] = 0;
vis[s] = 1;
while (!q.empty())
{
int x = q.front();
q.pop();
for (int i = 0; i < G[x].size(); i++)
{
edge &e = edges[G[x][i]];
if (!vis[e.to] && e.cap > e.flow)
{
vis[e.to] = 1;
dis[e.to] = dis[x] + 1;
q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int x, int a)
{
if (x == t || a == 0)
{
return a;
}
int flow = 0, f = 0;
for (int &i = cur[x]; i < G[x].size(); i++)
{
edge &e = edges[G[x][i]];
if (dis[x] + 1 == dis[e.to] && (f = dfs(e.to, min(a, e.cap - e.flow))) > 0)
{
e.flow += f;
edges[G[x][i] ^ 1].flow -= f;
flow += f;
a -= f;
if (a == 0)
{
break;
}
}
}
return flow;
}
int Maxflow(int s, int t)
{
this->s = s;
this->t = t;
int flow = 0;
while (bfs())
{
memset(cur, 0, sizeof(cur));
flow += dfs(s, INF);
}
return flow;
}
} dc;
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
scanf("%d%d", &n, &m);
for (int i = 0; i <= n; i++)
{
e[i].clear();
}
int u, v, w;
for (int i = 1; i <= m; i++)
{
scanf("%d%d%d", &u, &v, &w);
e[u].push_back(node(v, w));
e[v].push_back(node(u, w));
}
s = 1, t = n;
spfa();
dc.init();
for (int i = 1; i <= n; i++)
{
for (int j = 0; j < e[i].size(); j++)
{
if (dis[e[i][j].v] == dis[i] + 1)
{
dc.addEdge(i, e[i][j].v, e[i][j].w);
}
}
}
printf("%d\n", dc.Maxflow(s, t));
}
return 0;
}