题解:给一幅图,在这幅图的最短路上求最大流。
先跑一边最短路,然后将最短路上的边建图,跑一边最大流就好了。
建图我是用dist[u] + 1 ==dist[v]来判断他是不是最短路上的边的。
(弱智WA了一发。强行另存了一次边,然后强制将最短路上点标号小的向点标号大的建边。)
#include<bits/stdc++.h>
using namespace std;
const int MAXN=10010;
const int INF=0x3f3f3f3f;
const int MAXM = 400010;
struct Edge
{
int v;
int cost;
Edge(int _v=0,int _cost=0):v(_v),cost(_cost) {}
};
vector<Edge> E[MAXN];
void addedge(int u,int v,int w)
{
E[u].push_back(Edge(v,w));
}
bool vis[MAXN];//在队列标志
int cnt[MAXN];//每个点的入队列次数
int dist[MAXN];
int v,u,w;
void SPFA(int start,int n)
{
memset(vis,false,sizeof(vis));
for(int i=1; i<=n; i++)dist[i]=INF;
vis[start]=true;
dist[start]=0;
queue<int>que;
while(!que.empty())que.pop();
que.push(start);
memset(cnt,0,sizeof(cnt));
cnt[start]=1;
while(!que.empty())
{
int u=que.front();
que.pop();
vis[u]=false;
for(int i=0; i<E[u].size(); i++)
{
int v=E[u][i].v;
if(dist[v]>dist[u]+1)
{
dist[v]=dist[u]+1;
if(!vis[v])
{
vis[v]=true;
que.push(v);
if(++cnt[v]>n)return ;
//cnt[i]为入队列次数,用来判定是否存在负环回路
}
}
}
}
return ;
}
struct Edges
{
int to,next,cap,flow;
} edge[MAXM]; //注意是MAXM
int tol;
int head[MAXN];
int gap[MAXN],dep[MAXN],pre[MAXN],cur[MAXN];
void init()
{
tol = 0;
memset(head,-1,sizeof(head));
}
//加边,单向图三个参数,双向图四个参数
void add(int u,int v,int w,int rw=0)
{
edge[tol].to = v;
edge[tol].cap = w;
edge[tol].next = head[u];
edge[tol].flow = 0;
head[u] = tol++;
edge[tol].to = u;
edge[tol].cap = rw;
edge[tol].next = head[v];
edge[tol].flow = 0;
head[v]=tol++;
}
int sap(int start,int end,int N)
{
memset(gap,0,sizeof(gap));
memset(dep,0,sizeof(dep));
memcpy(cur,head,sizeof(head));
int u = start;
pre[u] = -1;
gap[0] = N;
int ans = 0;
while(dep[start] < N)
{
if(u == end)
{
int Min = INF;
for(int i = pre[u]; i != -1; i = pre[edge[i^1].to])
if(Min > edge[i].cap - edge[i].flow)
Min = edge[i].cap - edge[i].flow;
for(int i = pre[u]; i != -1; i = pre[edge[i^1].to])
{
edge[i].flow += Min;
edge[i^1].flow -= Min;
}
u = start;
ans += Min;
continue;
}
bool flag = false;
int v;
for(int i = cur[u]; i != -1; i = edge[i].next)
{
v = edge[i].to;
if(edge[i].cap - edge[i].flow && dep[v]+1 == dep[u])
{
flag = true;
cur[u] = pre[v] = i;
break;
}
}
if(flag)
{
u = v;
continue;
}
int Min = N;
for(int i = head[u]; i != -1; i = edge[i].next)
if(edge[i].cap - edge[i].flow && dep[edge[i].to] < Min)
{
Min = dep[edge[i].to];
cur[u] = i;
}
gap[dep[u]]--;
if(!gap[dep[u]])return ans;
dep[u] = Min+1;
gap[dep[u]]++;
if(u != start) u = edge[pre[u]^1].to;
}
return ans;
}
int main()
{
int t,n,m;
scanf("%d",&t);
while (t--)
{
scanf("%d %d",&n,&m);
init();
for (int i = 1; i <= n; i++)
{
E[i].clear();
}
for (int i = 0; i < m; i++)
{
scanf("%d %d %d",&u,&v,&w);
addedge(u,v,w);
addedge(v,u,w);
}
SPFA(1,n);
for (int i = 1; i <= n; i++)
{
for(int j = 0; j < E[i].size(); j++)
if(dist[i] + 1 == dist[E[i][j].v])
{
add(i,E[i][j].v,E[i][j].cost);
}
}
printf("%d\n",sap(1,n,n));
}
}