Ljunggren方程解的搜寻

 
Ljunggren方程
M. B. Nathanson所著《Elementary Methods in Number Theory》第42页给出了下面一个问题:“确定 Ljunggren方程 x 2-2y 4=-1在x≤1000内的所有可能的整数解。”这一问题可以通过设计程序解决。因为4次方数比平方数要稀疏,我们可以从变量y着手来设计问题求解程序。
为了在更大范围内寻找问题可能的解,我们限制1≤y≤181,y的上界限制为181,是因为2×181 4+1=2146566243刚好小于2 31,而这时1≤x≤46331。
// File:      eq_ljung.c
// Date:     05/07/2006
// Author:        Liu Jiangning
 
#include <stdio.h>
#include <conio.h>
#include <math.h>
 
#define BOOL int
#define TRUE 1
#define FALSE       0
 
BOOL isSqr(int v, int *x);
 
void main()
{
       int x, y;
       int p1, p2, p3, p4, v;
      
       p1 = 36;
       p2 = 14;
       p3 = 1;
       p4 = 0;
       for (y = 1; y <= 181; y++)
       {
              p4 += p3;
              p3 += p2;
              p2 += p1;
              p1 += 24;
 
              v = 2 * p4 - 1;
              if (isSqr(v, &x))
                     printf("%d^2-2*%d^4=-1/n", x, y);
       }
 
       getch();
}
 
BOOL isSqr(int v, int *x)
{
       int y;
 
       y = (int)sqrt((double)v);
       if (y*y == v)
       {
              *x = y;
              return TRUE;
       }
 
       return FALSE;
}
 
程序在该范围内找到两个解:
1 2-2*1 4=-1
239 2-2*13 4=-1
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值