图像亮度均衡算法

图像亮度均衡算法

图像亮度均衡算法的作用是提升图像的对比度和细节,使得图像的亮度分布更加均匀,从而改善视觉效果。通过调整亮度值,可以更好地揭示图像中的细节,尤其在低光或高光条件下的图像处理。
常见的图像亮度均衡算法包括直方图均衡化、对比度限制直方图均衡化(CLAHE)、自适应直方图均衡化和伽马校正等。这些算法各自有不同的优点和适用场景,例如,CLAHE可以有效防止噪声放大,而伽马校正则适用于非线性亮度调整。

各个算法的优缺点以及verilog实现难度

直方图均衡化:

优点:简单有效,能显著提升对比度。
缺点:可能导致细节丢失或伪影。
Verilog实现难度:中等,需要计算直方图并重映射像素。

对比度限制直方图均衡化(CLAHE):
优点:防止噪声放大,保持局部细节。
缺点:计算复杂度高,参数调整较多。
Verilog实现难度:较高,需要分块处理和插值计算。

自适应直方图均衡化:
优点:动态调整,适应性强。
缺点:处理时间长,计算资源需求高。
Verilog实现难度:高,需要实现块处理和边界处理。

伽马校正:
优点:简单易实现,非线性调整。
缺点:可能无法完全平衡亮度。
Verilog实现难度:低,主要涉及简单的乘法和幂运算

因此,本文主要提出一种新的适verilog实现的亮度均衡算法

实现方式

将整个图像的均值,和图像的像素点进行比较,判断像素点大于还是小于均值,,然后对像素点进行经验值比较。

如果像素点小于经验值,说明像素点较小,采用较小的gamma表映射,提亮暗处。

如果像素点在经验值范围内,做平滑过渡处理,采用像素值与均值的平均值。

如果像素点大于经验值,说明像素点较大,采用较大的gamma表映射,对像素值提亮,但不能过于曝光。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

eachanm

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值