编程之美2015资格赛

编程之美2015资格赛(题目列表:http://hihocoder.com/contest/msbop2015qual/problems)

第一题、2月29日

题意:给定两个日期,计算这两个日期之间有多少个2月29日(包括起始日期)。只有闰年有2月29日,满足以下一个条件的年份为闰年:
1. 年份能被4整除但不能被100整除
2. 年份能被400整除

思路:简单模拟。

#include <cstdio>
#include <cstring>
using namespace std;
int T,c;
char month[13][15] = {" ","January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November" , "December"};
int y1,d1,m1,y2,d2,m2;
char s[15];
int find(){
    int i;
    for(i = 1;i<=12;i++)
        if(!strcmp(month[i], s))
            return i;
    return -1;
}
int isrun(int x){
    return (x%400==0)||(x%4==0&&x%100!=0);
}
int main(){
    scanf("%d",&T);
    for(c = 1;c<=T;c++){
        int res=0;
        scanf("%s %d,%d",s,&d1,&y1);
        m1 = find();
        scanf("%s %d,%d",s,&d2,&y2);
        m2 = find();
        if(y1 == y2){
            if(isrun(y1) && ((m1<=2&&m2>2)||(m2==2&&d2==29)))
                res = 1;
            else
                res = 0;
        }else{
            if(y1%4==0){
                if(isrun(y1)&&m1<=2)
                    res++;
                y1++;
            }
            if(y2%4==0){
                if(isrun(y2)&&(m2>2 || (m2==2&&d2==29)))
                    res++;
                y2--;
            }
            res += y2/4-y1/4;
            res -= y2/100-y1/100;
            res += y2/400-y1/400;
        }
        printf("Case #%d: %d\n",c,res);
    }
    return 0;
}
/*
 
 */


第二题:

题意:给定字符串,求它的回文子序列个数。回文子序列反转字符顺序后仍然与原序列相同。例如字符串aba中,回文子序列为"a", "a", "aa", "b", "aba",共5个。内容相同位置不同的子序列算不同的子序列。

动态规划:dp[i][j]表示字符串s[i...j]中的回文串的个数。转移方程:如果s[i]==s[j],则dp[i][j] = dp[i][j-1]+dp[i+1][j]+1(前一个看成包含s[i]的加上不包含s[i]的,后一个看成包含s[j]的和不包含s[j]的,中间多加了一份既不包含s[i]又布包好s[j]的,正好表示两边填上s[i]和s[j]的情况;加1是表示s[i]和s[j]直接相连的情况)。如果s[i]!=s[j],则dp[i][j] = dp[i][j-1]+dp[i+1][j]-dp[i+1][j-1]。

对于大数据还是需要注意取模的处理:(dp[i+1][j]+dp[i][j-1]-dp[i+1][j-1]+M)%M中的+M必不可少

#include <cstdio>
#include <cstring>
#define N 1005
#define M 100007
using namespace std;
char s[N];
int dp[N][N];
int T,c,n,res;
int main(){
    scanf("%d",&T);
    for(c = 1;c<=T;c++){
        int i,j,k;
        res = 0;
        scanf("%s",s+1);
        n = (int)strlen(s+1);
        if(n == 1)
            res = 1;
        else{
            for(i = 1;i<n;i++){
                dp[i][i] = 1;
                if(s[i] == s[i+1])
                    dp[i][i+1] = 3;
                else
                    dp[i][i+1] = 2;
            }
            for(k = 3;k<=n;k++)
                for(i = 1;i<=n-k+1;i++){
                    j = i+k-1;
                    if(s[i] == s[j])
                        dp[i][j] = (dp[i+1][j]+dp[i][j-1]+1)%M;
                    else
                        dp[i][j] = (dp[i+1][j]+dp[i][j-1]-dp[i+1][j-1]+M)%M;
                }
            res = dp[1][n];
        }
        printf("Case #%d: %d\n",c,res);
    }
    return 0;
}

资格赛第三题:基站选址。需要在一个N × M的网格中建立一个通讯基站,通讯基站仅必须建立在格点上。网格中有A个用户,每个用户的通讯代价是用户到基站欧几里得距离的平方。网格中还有B个通讯公司,维护基站的代价是基站到最近的一个通讯公司的路程(路程定义为曼哈顿距离)。在网格中建立基站的总代价是用户通讯代价的总和加上维护基站的代价,最小总代价。

思路:以为是像poj2420一样的搜索,大数据WA。后来知道是一种贪心:只需要选择用户坐标的平均值中心及其四周即可。(参考了http://blog.youkuaiyun.com/misdom_tian_ya/article/details/45154567)

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define N 105
using namespace std;
struct point{
    long long x,y;
}s[1005],t[105],now,tmp;
int c,T,n,m,a,b;
int ori[4][2] = {{0,0},{0,1},{1,0},{1,1}};
long long dd(struct point a,struct point b){
    return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
long long dd2(struct point a,struct point b){
    return abs(a.x-b.x)+abs(a.y-b.y);
}
long long getdis(struct point now){
    int i;
    long long h=0x3fffffffffffffff,res=0;
    for(i = 0;i<a;i++)
        res += dd(s[i],now);
    for(i = 0;i<b;i++)
        if(h>dd2(t[i],now))
           h = dd2(t[i],now);
    res += h;
    return res;
}
int main(){
    int i;
    long long j,dis,avrx,avry;
    scanf("%d",&T);
    for(c = 1;c<=T;c++){
        avrx = avry = 0;
        scanf("%d %d %d %d",&n,&m,&a,&b);
        for(i = 0;i<a;i++){
            scanf("%lld %lld",&s[i].x,&s[i].y);
            avrx+=s[i].x;
            avry+=s[i].y;
        }
        for(i = 0;i<b;i++)
            scanf("%lld %lld",&t[i].x,&t[i].y);
        now.x = (avrx/a);
        now.y = (avry/a);
           for(i = 0;i<4;i++){
                tmp.x = now.x + ori[i][0];
                tmp.y = now.y + ori[i][1];
                if(i==0){
                    dis = getdis(tmp);
                    continue;
                }
                if((j=getdis(tmp)) < dis)
                    dis = j;
            }
        printf("Case #%d: %lld\n",c,dis);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值