本文同步于微信公众号:3D视觉前沿,欢迎大家关注。
在一些有关物体6D位姿估计或者机器人抓取的论文中,我们常会听到一个词:物体6D位姿估计 (6D object pose estimation),那什么是物体的6D位姿呢?它和SLAM中的相机6D位姿一样吗?
6D是指6个自由度,代表了3个自由度的位移 (也叫平移 (Translation)),以及3个自由度的空间旋转 (Rotation),合起来就叫位姿 (Pose)。位姿是一个相对的概念,指的是两个坐标系之间的位移和旋转变换。物体6D位姿和相机6D位姿是相似的,区别在于从哪个坐标系变换到相机坐标系。
相机6D位姿是指拍摄当前图像时刻,相机坐标系相对于世界坐标系发生的平移和旋转变换。世界坐标系可以定义在任意位置,也可以和当前相机坐标系重合。相机6D位姿通常用世界系到相机系的RT变换来表示,也即: T c = R c w ∗ T w + t c w T_c = R_{cw} * T_w + t_{cw} Tc=Rcw∗Tw+tcw,其中 R c w R_{cw} Rcw代表由世界系到相机系的旋转, t c w t_{cw} tcw 代表由世界系到相机系的平移, T c T_c Tc代表相机系下的3D点, T w T_w Tw代表世界系下的3D点。
而物体6D位姿是指拍摄当前图像时刻,相机坐标系相对于原始物体所在的世界系,发生的平移和旋转变换。原始物体可以放在世界系的任何位置,而且通常将物体本身的重心和朝向与世界系对齐。物体6D位姿通常用原始物体所在世界系到相机系的RT变换来表示,也即: T c = R c m ∗ T m + t c m T_c = R_{cm} * T_m + t_{cm} Tc=Rcm∗Tm+tcm,其中 R c m R_{cm} Rcm代表由原始物体 (model) 所在的世界系到相机系的旋转, t c m t_{cm} tcm代表由物体所在的世界系到相机系的平移, T c T_c Tc代表相机系下物体的3D点, T m T_m Tm代表物体所在世界系下物体的3D点。因此,当世界系和物体本身对齐时,相机的6D位姿等价于物体的6D位姿。
具体我们看一个物体6D位姿的例子,数据来自preprocessed LineMod dataset数据集,原始物体3D模型本身的重心和朝向与世界系是对齐的,其坐标值为 T m T_m Tm:
使用相机拍摄带有目标物体的场景后,恢复相机坐标系下的点云如下,此时目标物体的3D坐标为 T c T_c Tc:
基于给定的Ground Truth的物体6D位姿,camRm2c代表物体所在世界系到相机系的旋转矩阵R,camtm2c代表物体所在世界系到相机系的平移矩阵t:
cam_R_m2c: [0.09630630, 0.99404401, 0.05100790, 0.57332098, -0.01350810, -0.81922001, -0.81365103, 0.10814000, -0.57120699],
cam_t_m2c: [-105.35775150, -117.52119142, 1014.87701320],
使用 T c = R c m ∗ T m + t c m T_c = R_{cm} * T_m + t_{cm}