dlib 实战:人脸检测、关键点定位与疲劳检测的全流程实现

一、引言

在计算机视觉领域,人脸检测与分析是非常基础且重要的应用方向。dlib 库凭借其出色的人脸检测和关键点定位能力,成为了很多开发者的首选工具。本文将围绕基于 dlib 的人脸检测、人脸关键点定位以及疲劳检测展开,详细介绍相关代码与原理。

二、人脸检测

(一)原理

dlib 的get_frontal_face_detector方法采用了 HOG(Histogram of Oriented Gradients,方向梯度直方图)特征结合线性分类器、图像金字塔以及滑动窗口检测的技术。HOG 特征能够很好地描述图像局部的梯度信息,通过对图像不同尺度的金字塔层进行滑动窗口检测,从而可以检测出不同大小的人脸。这种方法相比传统的 Haar 级联分类器,在检测精度和对不同尺度人脸的适应性上都有更好的表现。

(二)代码实现与解析

import cv2
import dlib

# 生成人脸检测器,采用HOG等技术,检测效果优于OpenCV的Haar级联分类器
detector = dlib.get_frontal_face_detector()  
img = cv2.imread("peopl.jpg")
# 检测人脸,参数1表示上采样次数,增大该值可提高小人脸检测效果,但降低速度
faces = detector(img, 1)  
for face in faces:  
    # 获取人脸框的坐标
    x1 = face.left()
    y1 = face.top()
    x2 = face.right()
    y2 = face.bottom()
    # 绘制人脸框,颜色为绿色,线宽为2
    cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
# 显示绘制人脸框后的图像
cv2.imshow("result", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

首先,我们导入cv2dlib库,使用dlib.get_frontal_face_detector()创建人脸检测器。然后读取图像,调用检测器的detector方法检测图像中的人脸,得到人脸框的集合。接着遍历每个人脸框,获取其左上角和右下角的坐标,并用cv2.rectangle函数绘制出人脸框。最后显示处理后的图像并等待用户操作后关闭窗口。

三、人脸关键点定位

(一)原理

dlib 的shape_predictor模型是基于训练好的回归树集合来工作的。它首先通过人脸检测器确定人脸的大致区域,然后在该区域内利用回归树逐步预测出 68 个(以shape_predictor_68_face_landmarks.dat模型为例)关键点位的坐标,这些关键点可以精准地定位到人脸的眼睛、鼻子、眉毛、嘴唇以及轮廓等部位。

(二)代码实现与解析

import numpy as np
imp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值