DP系列2【01背包】洛谷 P1049 [NOIP 2001 普及组] 装箱问题题解

题目描述

有一个箱子容量为 V,同时有 n 个物品,每个物品有一个体积。

现在从 n 个物品中,任取若干个装入箱内(也可以不取),使箱子的剩余空间最小。输出这个最小值。

输入格式

第一行共一个整数 V,表示箱子容量。

第二行共一个整数 n,表示物品总数。

接下来 n 行,每行有一个正整数,表示第 i 个物品的体积。

输出格式

  • 共一行一个整数,表示箱子最小剩余空间。

输入输出样例

输入 #1

24
6
8
3
12
7
9
7

输出 #1

0

说明/提示

对于 100% 数据,满足 0<n≤30,1≤V≤20000。

一、题目概述

在洛谷 P1049 这道题中,给定一个箱子的容量 ​V,以及 ​n 个物品,每个物品都有各自的体积。我们的任务是将这些物品放入箱子中,使得箱子的剩余空间最小。这是一道经典的动态规划类型题目,非常适合用来加深对动态规划(DP)和背包问题相关知识的理解与应用。

二、解题思路分析

2.1 理解问题本质

首先,我们要明确目标是让箱子剩余空间最小,这等价于在箱子容量限制下,尽可能多地装入物品,也就是要最大化装入物品的总体积。

2.2 动态规划思想运用​

我们采用动态规划方法来解决此问题。定义一个一维数组 ​dp,其中 dp[i]表示当箱子容量为 ​i时,能够装入物品的最大体积。

2.3 状态转移方程推导​

对于每个物品,我们都面临两种选择:放入当前物品或者不放入当前物品。假设当前考虑的物品体积为 ​wj​(​j表示物品的序号),那么状态转移方程可以表示为:​dp[i]=max(dp[

### NOIP2001 普及组 装箱问题 C语言 实现 解题思路 #### 一维背包问题转换 装箱问题可以视为一种特殊的动态规划问题,类似于一维背包问题。目标是在给定容量的情况下最大化装载物品的数量或价值,在此特定情况下是将一系列不同尺寸的物体放入固定大小的箱子中。 #### 数据结构设计 定义数组 `f[j]` 表示前若干件商品恰好填满体积为 j 的最小数量。对于每一个新加入的商品 i ,更新 f 数组中的值来反映新的最优解状态变化情况[^1]。 #### 动态转移方程构建 设当前处理到第i个物件,其占用空间为w[i],则有如下递推关系: 当j >= w[i]时, \[ f[j]=min(f[j-w[i]]+1,f[j]) \] 其中 \(f[0]\) 初始化为0表示没有任何货物的状态下所需容器数目自然也为零;其他位置初始化成无穷大(INF),意味着这些状态下暂时无法达到有效配置方案. ```c #include <stdio.h> #define INF (int)(1e9) const int maxv = 50 * 100 + 1; int v, n; int weight[30]; bool used[maxv]; void solve() { fill(used, used + maxv, false); for(int i = 0; i < n ; ++i){ for(int j = v - weight[i]; j >= 0; --j){ if(!used[j]){ used[j + weight[i]] = true; } } } } int main(){ scanf("%d %d", &v, &n); for(int i = 0; i < n; ++i){ scanf("%d", &weight[i]); } solve(); int cnt = 0; for(int i = 0; i <= v; ++i){ if(used[i]) ++cnt; } printf("%d\n", cnt); } ``` 上述代码实现了基于布尔型数组记录可行性的简化版本,实际比赛中可能更倾向于使用整数类型的dp表来进行更加精确的结果计算并返回最终所需的最少集装箱数量而非简单计数可填充的空间组合总数.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值