“微积分是近代数学中最伟大的成就,对它的重要性无论做怎样的估计都不会。”— 冯·诺伊曼
“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了!” — 恩格斯
前言
十七世纪下半叶,微积分的创立,极大地推动了数学的发展。过去很多用初等数学无法解决的问题,运用微积分,这些问题往往迎刃而解,显示出微积分学的非凡威力。微积分是继欧几里得几何之后,数学界的一个最大的创造。
微积分是大学数学的必修课,但还不能代表大学数学的全部内容,后面还会介绍 线性代数、数论、群论、图论、概率论等内容。
中学数学的知识可以查看链接:中学数学公式集
极限与微分
基本定义
名称 | 表达式 |
---|---|
导数 | f ′ ( x ) = d f ( x ) d x = lim ε → 0 f ( x + ε ) − f ( x ) ε f'(x)=\frac{df(x)}{dx}=\lim_{\varepsilon \rightarrow 0}\frac {f(x+\varepsilon)-f(x)}{\varepsilon} f′(x)=dxdf(x)=ε→0limεf(x+ε)−f(x) |
链式法则 | f ( g ( x ) ) = f ′ ( g ( x ) ) ⋅ g ′ ( x ) f(g(x))=f'(g(x)) \cdot g'(x) f(g(x))=f′(g(x))⋅g′(x) |
洛必达法则 | lim x → a f ( x ) g ( x ) = lim x → a f ′ ( x ) g ′ ( x ) , \lim_{x \rightarrow a} \frac{f(x)}{g(x)}=\lim_{x \rightarrow a} \frac{f'(x)}{g'(x)}, x→alimg(x)f(x)=x→alimg′(x)f′(x),当 f ( a ) = g ( a ) = 0 f(a)=g(a)=0 f(a)=g(a)=0 或 ∣ f ( a ) ∣ = ∣ g ( a ) ∣ = + ∞ |f(a)|=|g(a)|=+\infty ∣f(a)∣=∣g(a)∣=+∞ 时 |
微积分基本定理 | f ( b ) − f ( a ) = ∫ a b f ′ ( x ) d x f(b)-f(a)=\int_a^b f'(x)dx f(b)−f(a)=∫abf′(x)dx |
分部积分法 | ∫ f ( x ) g ′ ( x ) d x = ∫ f ( x ) d g ( x ) = f ( x ) g ( x ) − ∫ g ( x ) d f ( x ) \int f(x)g'(x) dx=\int f(x)dg(x)=f(x)g(x)-\int g(x)df(x) ∫f(x)g′(x)dx=∫f(x)dg(x)=f(x)g(x)−∫g(x)df(x) |
极限
极限 | 方法 |
---|---|
lim n → + ∞ ( 1 + x n ) n = e x \lim_{n \rightarrow +\infty} (1+\frac{x}{n})^n = e^x n→+∞lim(1+nx)n=ex | ( 1 + 1 n ) n = ∑ k = 0 n C n k 1 n k = > lim n → + ∞ ∑ k = 0 n n k k ! 1 n k = ∑ k = 0 ∞ 1 n ! (1+\frac{1}{n})^n=\sum_{k=0}^nC_n^k\frac{1}{n^k}=>\lim_{n \rightarrow +\infty}\sum_{k=0}^n\frac{n^k}{k!}\frac{1}{n^k}=\sum_{k=0}^\infty\frac{1}{n!} (1+n1)n=k=0∑nCnknk1=>n→+∞limk=0∑nk!nknk1=k=0∑∞n!1 |
lim x → 0 sin ( x ) x = 1 \lim_{x \rightarrow 0} \frac{\sin(x)}{x} = 1 x→0limxsin(x)=1 | sin ( x ) ≤ x ≤ tan ( x ) \sin(x) \le x \le \tan(x) sin(x)≤x≤tan(x) |
lim n → + ∞ ( ∑ k = 1 n 1 k − ln ( n ) ) = γ \lim_{n \rightarrow +\infty} (\sum_{k=1}^n \frac{1}{k} - \ln(n)) = \gamma n→+∞lim(k=1∑nk1−ln(n))=γ | 欧拉-马斯克若尼常数 |
lim n → 0 2 π n ( n / e ) n n ! = 1 \lim_{n \rightarrow 0}\frac{\sqrt{2\pi n} (n/e) ^n }{n!}=1 n→0limn!2πn(n/e)n=1 | 斯特林公式 |
导数
原函数 | 导数 |
---|---|
f ( x ) g ( x ) f(x)g(x) f(x)g(x) | f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) f'(x)g(x) + f(x)g'(x) f′(x)g(x)+f(x)g′(x) |
f ( x ) g ( x ) \frac {f(x)}{g(x)} g(x)f(x) | f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) \frac {f'(x)g(x) - f(x)g'(x) }{g^2(x)} g2(x)f′(x)g(x)−f(x)g′(x) |
f ( x ) g ( x ) {f(x)}^{g(x)} f(x)g(x) | ( g ( x ) f ′ ( x ) f ( x ) + g ′ ( x ) l n ( f ( x ) ) ) f ( x ) g ( x ) (\frac{g(x)f'(x)}{f(x)}+g'(x)ln(f(x))){f(x)}^{g(x)} (f(x)g(x)f′(x)+g′(x)ln(f(x)))f(x)g(x) |
x a x^a xa | a x a − 1 ax^{a-1} axa−1 |
a x a^x ax | a x ln ( a ) a^x\ln(a) axln(a) |
exp ( x ) \exp(x) exp(x) | exp ( x ) \exp(x) exp(x) |
ln ( x ) \ln(x) ln(x) | 1 x \frac{1}{x} x1 |
sin ( x ) \sin(x) sin(x) | cos ( x ) \cos(x) cos(x) |
cos ( x ) \cos(x) cos(x) | − sin ( x ) -\sin(x) −sin(x) |
tan ( x ) \tan(x) tan(x) | 1 cos 2 ( x ) \frac{1}{\cos^2(x)} cos2(x)1 |
arccos ( x ) , arcsin ( x ) \arccos(x) , \arcsin(x) arccos(x),arcsin(x) | 1 1 − x 2 \frac{1}{\sqrt{1-x^2}} 1−x21 |
arctan ( x ) \arctan(x) arctan(x) | 1 1 + x 2 \frac{1}{1+x^2} 1+x21 |
泰勒级数
f ( x + a ) = ∑ n = 0 ∞ f ( n ) ( a ) n ! x n = f ( a ) + f ′ ( a ) x + f ′ ′ ( a ) 2 ! x 2 + f ′ ′ ′ ( a ) 3 ! x 3 + . . . f(x+a)=\sum_{n=0}^\infty \frac{f^{(n)}(a)}{n!}x^n=f(a)+f'(a)x+\frac{f''(a)}{2!}x^2+\frac{f'''(a)}{3!}x^3+... f(x+a)=n=0∑∞n!f(n)(a)xn=f(a)+f′(a)x+2!f′′(a)x2+3!f′′′(a)x3+...
函数 | 泰勒级数展开 | 通式 | 收敛半径 |
---|---|---|---|
( 1 + x ) n (1+x)^n (1+x)n | 1 + n x + n ( n − 1 ) 2 x 2 + n ( n − 1 ) ( n − 2 ) 3 ! x 3 + n ( n − 1 ) ( n − 2 ) ( n − 3 ) 4 ! x 4 + . . . 1+nx+\frac{n(n-1)}{2}x^2+\frac{n(n-1)(n-2)}{3!}x^3+\frac{n(n-1)(n-2)(n-3)}{4!}x^4+... 1+nx+2n(n−1)x2+3!n(n−1)(n−2)x3+4!n(n−1)(n−2)(n−3)x4+... | ∑ k = 0 ∞ C n k k ! x k \sum_{k=0}^\infty \frac{C_n^k}{k!}x^k k=0∑∞k!Cnkxk | 1 1 1 |
e x e^x ex | 1 + x + 1 2 x 2 + 1 3 ! x 3 + 1 4 ! x 4 + . . . 1+x+\frac{1}{2}x^2+\frac{1}{3!}x^3+\frac{1}{4!}x^4+... 1+x+21x2+3!1x3+4!1x4+... | ∑ k = 0 ∞ 1 k ! x k \sum_{k=0}^\infty \frac{1}{k!}x^k k=0∑∞k!1xk | + ∞ +\infty +∞ |
ln ( 1 + x ) \ln (1+x) ln(1+x) | x − 1 2 x 2 + 1 3 x 3 − 1 4 x 4 + . . . x-\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{1}{4}x^4+... x−21x2+31x3−41x4+... | ∑ k = 0 ∞ ( − 1 ) k + 1 k x k \sum_{k=0}^\infty \frac{(-1)^{k+1}}{k}x^k k=0∑∞k(−1)k+1xk | 1 |
sin x \sin x sinx | x − 1 3 ! x 3 + 1 5 ! x 5 − 1 7 ! x 7 + . . . x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-\frac{1}{7!}x^7+... x−3!1x3+5!1x5−7!1x7+... | ∑ k = 0 ∞ ( − 1 ) k ( 2 k + 1 ) ! x 2 k + 1 \sum_{k=0}^\infty \frac{(-1)^k}{(2k+1)!}x^{2k+1} k=0∑∞(2k+1)!(−1)kx2k+1 | + ∞ +\infty +∞ |
cos x \cos x cosx | 1 − 1 2 ! x 2 + 1 4 ! x 4 − 1 6 ! x 6 + . . . 1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\frac{1}{6!}x^6+... 1−2!1x2+4!1x4−6!1x6+... | ∑ k = 0 ∞ ( − 1 ) k ( 2 k ) ! x 2 k \sum_{k=0}^\infty \frac{(-1)^k}{(2k)!}x^{2k} k=0∑∞(2k)!(−1)kx2k | + ∞ +\infty +∞ |
arcsin x \arcsin x arcsinx | x + 1 6 x 3 + 3 40 x 5 + 5 112 x 7 + 35 1152 x 9 + . . . x+\frac{1}{6}x^3+\frac{3}{40}x^5+\frac{5}{112}x^7+\frac{35}{1152}x^9+... x+61x3+403x5+1125x7+115235x9+... | ∑ k = 0 ∞ ( 2 n ) ! 4 n ( n ! ) 2 ( 2 n + 1 ) x 2 n + 1 \sum_{k=0}^\infty\frac{(2n)!}{4^n(n!)^2(2n+1)}x^{2n+1} k=0∑∞4n(n!)2(2n+1)(2n)!x2n+1 | 1 |
arctan x \arctan x arctanx | x − 1 3 x 3 + 1 5 x 5 − 1 7 x 7 + . . . x-\frac{1}{3}x^3+\frac{1}{5}x^5-\frac{1}{7}x^7+... x−31x3+51x5−71x7+... | ∑ k = 0 ∞ ( − 1 ) k 2 k + 1 x 2 k + 1 \sum_{k=0}^\infty\frac{(-1)^k}{2k+1}x^{2k+1} k=0∑∞2k+1(−1)kx2k+1 | 1 |
欧拉-麦克劳林(Euler-Maclaurin)求和公式
∑
n
=
a
b
f
(
n
)
=
∫
a
b
f
(
x
)
d
x
+
f
(
a
)
+
f
(
b
)
2
+
∑
k
=
1
m
B
2
k
(
2
k
)
!
[
f
(
2
k
−
1
)
(
b
)
−
f
(
2
k
−
1
)
(
a
)
]
+
R
m
\sum^b_{n=a}f(n)=\int_a^bf(x)dx+\frac{f(a)+f(b)}{2}+\sum^m_{k=1} \frac{B_{2k}}{(2k)!}[f^{(2k-1)}(b)-f^{(2k-1)}(a)]+R_m
n=a∑bf(n)=∫abf(x)dx+2f(a)+f(b)+k=1∑m(2k)!B2k[f(2k−1)(b)−f(2k−1)(a)]+Rm
其中
B
n
B_n
Bn是伯努利数,
f
2
k
−
1
f^{2k-1}
f2k−1表示
f
(
x
)
f(x)
f(x)的 2k-1 阶导数。
如果固定a=1,则可以得到以下式子:
∑
k
=
1
n
f
(
k
)
=
∫
f
(
n
)
d
n
+
C
+
f
(
n
)
/
2
+
f
′
(
n
)
/
12
+
O
(
f
′
′
′
(
n
)
)
\sum^n_{k=1}f(k)=\int f(n)dn+C+f(n)/2+f'(n)/12+O(f'''(n))
k=1∑nf(k)=∫f(n)dn+C+f(n)/2+f′(n)/12+O(f′′′(n))
∑ k = 1 n f ( k ) \sum^n_{k=1} f(k) ∑k=1nf(k) | ∫ f ( n ) d n \int f(n)dn ∫f(n)dn | C C C | f ( n ) / 2 f(n)/2 f(n)/2 | f ′ ( n ) / 12 f'(n)/12 f′(n)/12 | O ( f ′ ′ ′ ( n ) ) O(f'''(n)) O(f′′′(n)) | 备注 |
---|---|---|---|---|---|---|
∑ k = 1 n k \sum^n_{k=1} k ∑k=1nk | n 2 / 2 n^2/2 n2/2 | 0 | n / 2 n/2 n/2 | 0 | 0 | |
∑ k = 1 n k 2 \sum^n_{k=1} k^2 ∑k=1nk2 | n 3 / 3 n^3/3 n3/3 | 0 | n 2 / 2 n^2/2 n2/2 | n / 6 n/6 n/6 | 0 | |
∑ k = 1 n k 3 \sum^n_{k=1} k^3 ∑k=1nk3 | n 4 / 4 n^4/4 n4/4 | 0 | n 3 / 2 n^3/2 n3/2 | n 2 / 4 n^2/4 n2/4 | 0 | |
∑ k = 1 n 1 / k \sum^n_{k=1} 1/k ∑k=1n1/k | ln n \ln n lnn | γ \gamma γ | 1 / 2 n 1/2n 1/2n | − 1 / 12 n 2 -1/12n^2 −1/12n2 | O ( 1 / n 4 ) O(1/n^4) O(1/n4) | γ = 0.577215664... \gamma=0.577215664... γ=0.577215664... |
∑ k = 1 n 1 / k 2 \sum^n_{k=1} 1/k^2 ∑k=1n1/k2 | − 1 / n -1/n −1/n | ζ ( 2 ) \zeta(2) ζ(2) | 1 / 2 n 2 1/2n^2 1/2n2 | − 1 / 6 n 3 -1/6n^3 −1/6n3 | O ( 1 / n 5 ) O(1/n^5) O(1/n5) | ζ ( 2 ) = π 2 / 6 \zeta(2)=\pi^2/6 ζ(2)=π2/6 |
∑ k = 1 n k \sum^n_{k=1} \sqrt{k} ∑k=1nk | 2 n n / 3 2n\sqrt{n}/3 2nn/3 | ζ ( − 0.5 ) \zeta(-0.5) ζ(−0.5) | n / 2 \sqrt{n}/2 n/2 | 1 / 24 n 1/24\sqrt{n} 1/24n | O ( 1 / n 2.5 ) O(1/n^{2.5}) O(1/n2.5) | ζ ( − 0.5 ) = − 0.2078862249 \zeta(-0.5)=-0.2078862249 ζ(−0.5)=−0.2078862249 |
∑ k = 1 n 1 / k \sum^n_{k=1} 1/\sqrt{k} ∑k=1n1/k | 2 n 2\sqrt{n} 2n | ζ ( 0.5 ) \zeta(0.5) ζ(0.5) | 1 / 2 k 1/2\sqrt{k} 1/2k | − 1 / 6 n 3 -1/6n^3 −1/6n3 | O ( 1 / n 3.5 ) O(1/n^{3.5}) O(1/n3.5) | ζ ( 0.5 ) = − 1.4603545088... \zeta(0.5)=-1.4603545088... ζ(0.5)=−1.4603545088... |
∑ k = 1 n ln k \sum^n_{k=1} \ln k ∑k=1nlnk | n ( ln n − 1 ) n(\ln n-1) n(lnn−1) | − ζ ′ ( 0 ) -\zeta'(0) −ζ′(0) | ln n / 2 \ln n/2 lnn/2 | 1 / 12 n 1/12n 1/12n | O ( 1 / n 3 ) O(1/n^3) O(1/n3) | ζ ′ ( 0 ) = − ln 2 π \zeta'(0)=-\ln \sqrt{2\pi} ζ′(0)=−ln2π |
∑ k = 1 n k ln k \sum^n_{k=1} k\ln k ∑k=1nklnk | n 2 ( 2 ln n − 1 ) / 4 n^2(2\ln{n}-1)/4 n2(2lnn−1)/4 | − ζ ′ ( − 1 ) -\zeta'(-1) −ζ′(−1) | n ln n / 2 n\ln n/2 nlnn/2 | ( ln n + 1 ) / 12 (\ln n+1)/12 (lnn+1)/12 | O ( 1 / n 2 ) O(1/n^2) O(1/n2) | ζ ′ ( − 1 ) = − 0.16542113... \zeta'(-1)=-0.16542113... ζ′(−1)=−0.16542113... |
∑ k = 1 n ln k / k \sum^n_{k=1} \ln k/k ∑k=1nlnk/k | ( ln n ) 2 / 2 (\ln{n})^2/2 (lnn)2/2 | γ 1 \gamma_1 γ1 | ln n / 2 n \ln n/2n lnn/2n | ( 1 − ln n ) / 12 n 2 (1-\ln n)/12n^2 (1−lnn)/12n2 | O ( ln n / n 4 ) O(\ln n/n^4) O(lnn/n4) | γ 1 = − 0.0728158454... \gamma_1=-0.0728158454... γ1=−0.0728158454... |
∑ k = 1 n ln k / k \sum^n_{k=1} \ln k/\sqrt{k} ∑k=1nlnk/k | 2 n ( ln n − 2 ) 2\sqrt{n}(\ln{n}-2) 2n(lnn−2) | − ζ ′ ( 0.5 ) -\zeta'(0.5) −ζ′(0.5) | ln n / 2 n \ln n/2\sqrt{n} lnn/2n | ( 2 − ln n ) / 24 n n (2-\ln n)/24n\sqrt{n} (2−lnn)/24nn | O ( ln n / n 3.5 ) O(\ln n/n^{3.5}) O(lnn/n3.5) | ζ ′ ( 0.5 ) = − 3.92264613... \zeta'(0.5)=-3.92264613... ζ′(0.5)=−3.92264613... |
∑ k = 1 n k ln k \sum^n_{k=1} \sqrt{k}\ln k ∑k=1nklnk | n n ( 6 ln n − 4 ) / 9 n\sqrt{n}(6\ln{n}-4)/9 nn(6lnn−4)/9 | − ζ ′ ( − 0.5 ) -\zeta'(-0.5) −ζ′(−0.5) | n ln n / 2 \sqrt{n}\ln n/2 nlnn/2 | ( 2 + ln n ) / 2 n (2+\ln n)/2\sqrt{n} (2+lnn)/2n | O ( ln n / n 2.5 ) O(\ln n/n^{2.5}) O(lnn/n2.5) | ζ ′ ( − 0.5 ) = − 0.36085436... \zeta'(-0.5)=-0.36085436... ζ′(−0.5)=−0.36085436... |
无穷级数求和
级数和 | 方法 |
---|---|
ζ ( s ) = ∏ p r i m e p 1 1 − p − s = ∑ n = 1 ∞ 1 n s \zeta(s)=\prod_{prime\ p}\frac{1}{1-p^{-s}}=\sum_{n=1}^\infty \frac{1}{n^s} ζ(s)=prime p∏1−p−s1=n=1∑∞ns1 | 黎曼 ζ \zeta ζ函数 |
ζ ( 2 ) = ∑ n = 1 ∞ 1 n 2 = 1 + 1 4 + 1 9 + 1 16 + . . . = π 2 6 \zeta(2)=\sum_{n=1}^\infty \frac{1}{n^2}=1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...=\frac {\pi^2}{6} ζ(2)=n=1∑∞n21=1+41+91+161+...=6π2 | 巴塞尔问题, sin x x = ∏ n = 1 ∞ ( 1 − x 2 n 2 π 2 ) \frac{\sin x}{x}=\prod_{n=1}^\infty (1-\frac{x^2}{n^2\pi^2}) xsinx=n=1∏∞(1−n2π2x2) |
∑ n = 1 ∞ ( − 1 ) n + 1 n = 1 − 1 2 + 1 3 − 1 4 + . . . = ln 2 \sum_{n=1}^\infty \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...=\ln 2 n=1∑∞n(−1)n+1=1−21+31−41+...=ln2 | ln ( 1 + x ) \ln(1+x) ln(1+x)的泰勒展开,在 x = 1 x=1 x=1的情况 |
∑ n = 0 ∞ ( − 1 ) n 2 n + 1 = 1 − 1 3 + 1 5 − 1 7 + . . . = π 4 \sum_{n=0}^\infty \frac{(-1)^{n}}{2n+1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+...=\frac{\pi}{4} n=0∑∞2n+1(−1)n=1−31+51−71+...=4π | arctan ( x ) \arctan(x) arctan(x)的泰勒展开,在 x = 1 x=1 x=1的情况 |
积分
不定积分
公式 | 方法 |
---|---|
∫ x n d x = x n + 1 n + 1 + C n ≠ − 1 \int x^n dx=\frac{x^{n+1}}{n+1}+C\quad n\ne -1 ∫xndx=n+1xn+1+Cn=−1 | |
∫ 1 x d x = ln x + C \int \frac{1}{x} dx=\ln x+C ∫x1dx=lnx+C | |
∫ 1 x 2 − a 2 d x = 1 2 a ln ∣ x − a x + a ∣ + C \int \frac{1}{x^2-a^2} dx=\frac{1}{2a} \ln |\frac{x-a}{x+a}| +C ∫x2−a21dx=2a1ln∣x+ax−a∣+C | 1 x 2 − a 2 = 1 2 a ( 1 x − a − 1 x + a ) \frac{1}{x^2-a^2}=\frac{1}{2a}(\frac{1}{x-a}-\frac{1}{x+a}) x2−a21=2a1(x−a1−x+a1) |
∫ 1 x 2 + a 2 d x = 1 a arctan ( x a ) + C \int \frac{1}{x^2+a^2} dx=\frac{1}{a} \arctan(\frac{x}{a})+C ∫x2+a21dx=a1arctan(ax)+C | ( arctan x ) ′ = 1 x 2 + 1 (\arctan x)'=\frac{1}{x^2+1} (arctanx)′=x2+11 |
∫ 1 ( x 2 + a 2 ) 2 d x = 1 2 a 3 arctan x a + x 2 a 2 ( a 2 + x 2 ) + C \int \frac{1}{(x^2+a^2)^2} dx=\frac{1}{2a^3}\arctan \frac{x}{a}+\frac{x}{2a^2(a^2+x^2)}+C ∫(x2+a2)21dx=2a31arctanax+2a2(a2+x2)x+C | ∫ ∂ ∂ a 1 x 2 + a 2 d x = ∂ ∂ a ( 1 a arctan x a ) + C \int \frac{\partial}{\partial a} \frac{1}{x^2+a^2} dx=\frac{\partial}{\partial a}(\frac{1}{a} \arctan \frac{x}{a})+C ∫∂a∂x2+a21dx=∂a∂(a1arctanax)+C |
∫ a 2 − x 2 d x = x a 2 − x 2 + a 2 4 arcsin ( x a ) + C \int \sqrt{a^2-x^2}dx=x\sqrt{a^2-x^2}+\frac{a^2}{4}\arcsin(\frac{x}{a})+C ∫a2−x2dx=xa2−x2+4a2arcsin(ax)+C | x = a sin t x=a\sin t x=asint |
∫ x 2 + a d x = 1 2 ( x x 2 + a + a ln ∣ x 2 + a ∣ ) + C \int \sqrt{x^2+a}dx=\frac{1}{2}(x\sqrt{x^2+a}+a\ln|\sqrt{x^2+a}|)+C ∫x2+adx=21(xx2+a+aln∣x2+a∣)+C | x = a sinh t x=a \sinh t x=asinht |
∫ 1 a 2 − x 2 d x = arcsin x a + C \int \frac{1}{\sqrt{a^2-x^2}}dx=\arcsin \frac{x}{a}+C ∫a2−x21dx=arcsinax+C | arcsin ( x ) ′ = 1 1 − x 2 \arcsin(x)'=\frac{1}{\sqrt{1-x^2}} arcsin(x)′=1−x21 |
∫ 1 x 2 + a d x = ln ∣ x + x 2 + a ∣ + C \int \frac{1}{\sqrt{x^2+a}}dx=\ln|x+\sqrt{x^2+a}|+C ∫x2+a1dx=ln∣x+x2+a∣+C | a r c s i n h ( x ) ′ = 1 1 + x 2 arcsinh(x)'=\frac{1}{\sqrt{1+x^2}} arcsinh(x)′=1+x21 |
∫ x x 2 + a d x = x 2 + a + C \int \frac{x}{\sqrt{x^2+a}}dx=\sqrt{x^2+a}+C ∫x2+axdx=x2+a+C | t = x 2 + a t=x^2+a t=x2+a |
∫ sin ( x ) d x = − cos ( x ) + C \int \sin(x) dx=-\cos(x)+C ∫sin(x)dx=−cos(x)+C | |
∫ cos ( x ) d x = sin ( x ) + C \int \cos(x) dx=\sin(x)+C ∫cos(x)dx=sin(x)+C | |
∫ tan ( x ) d x = − ln ∣ cos ( x ) ∣ + C \int \tan(x)dx=-\ln|\cos(x)|+C ∫tan(x)dx=−ln∣cos(x)∣+C | ∫ s i n ( x ) c o s ( x ) d x = ∫ − d c o s ( x ) c o s ( x ) \int \frac{sin(x)}{cos(x)}dx=\int \frac{-d cos(x)}{cos(x)} ∫cos(x)sin(x)dx=∫cos(x)−dcos(x) |
∫ sin 2 ( x ) d x = 1 4 ( 2 x − sin 2 x ) + C \int \sin^2(x) dx= \frac{1}{4}(2x-\sin 2x)+C ∫sin2(x)dx=41(2x−sin2x)+C | |
∫ sin 3 ( x ) d x = 1 12 ( cos 3 x − 9 cos x ) + C \int \sin^3(x) dx= \frac{1}{12}(\cos 3x-9\cos x)+C ∫sin3(x)dx=121(cos3x−9cosx)+C | |
∫ sin ( x ) cos ( x ) d x = 1 2 sin 2 x + C \int \sin (x)\cos (x) dx= \frac{1}{2}\sin^2 x+C ∫sin(x)cos(x)dx=21sin2x+C | |
∫ 1 sin ( x ) d x = l n ∣ 1 − c o s ( x ) s i n ( x ) ∣ + C = ln ∣ tan x 2 ∣ + C \int \frac{1}{\sin(x)}dx=ln|\frac{1-cos(x)}{sin(x)}|+C=\ln|\tan\frac{x}{2}|+C ∫sin(x)1dx=ln∣sin(x)1−cos(x)∣+C=ln∣tan2x∣+C | ∫ s i n ( x ) d x s i n 2 ( x ) = ∫ d c o s ( x ) 1 − c o s 2 ( x ) \int\frac{sin(x)dx}{sin^2(x)}=\int\frac{dcos(x)}{1-cos^2(x)} ∫sin2(x)sin(x)dx=∫1−cos2(x)dcos(x) |
∫ 1 a + cos x d x = 1 1 − a 2 ln tan ( x / 2 ) 1 − a 2 + a + 1 tan ( x / 2 ) 1 − a 2 − a − 1 + C \int \frac{1}{a+\cos x}dx=\frac{1}{\sqrt{1-a^2}}\ln \frac{\tan(x/2)\sqrt{1-a^2}+a+1}{\tan(x/2)\sqrt{1-a^2}-a-1}+C ∫a+cosx1dx=1−a21lntan(x/2)1−a2−a−1tan(x/2)1−a2+a+1+C | 换元法 t = tan x 2 t=\tan \frac{x}{2} t=tan2x |
∫ 1 sin 2 ( x ) d x = − 1 tan ( x ) + C \int \frac{1}{\sin^2(x)}dx=-\frac{1}{\tan(x)}+C ∫sin2(x)1dx=−tan(x)1+C | |
∫ x sin ( x ) d x = sin ( x ) − x cos ( x ) + C \int x\sin(x)dx=\sin(x)-x\cos(x)+C ∫xsin(x)dx=sin(x)−xcos(x)+C | 分部积分法 |
∫ x cos ( x ) d x = cos ( x ) + x sin ( x ) + C \int x\cos(x)dx= \cos(x)+x\sin(x)+C ∫xcos(x)dx=cos(x)+xsin(x)+C | 分部积分法 |
∫ x 2 sin ( x ) d x = 2 x sin ( x ) − ( x 2 − 2 ) cos ( x ) + C \int x^2\sin(x)dx= 2x\sin(x)-(x^2-2)\cos(x)+C ∫x2sin(x)dx=2xsin(x)−(x2−2)cos(x)+C | 分部积分法 |
∫ x 2 cos ( x ) d x = 2 x cos ( x ) + ( x 2 − 2 ) sin ( x ) + C \int x^2\cos(x)dx= 2x\cos(x)+(x^2-2)\sin(x)+C ∫x2cos(x)dx=2xcos(x)+(x2−2)sin(x)+C | 分部积分法 |
∫ x 3 cos ( x ) d x = ( 3 x 2 − 6 ) cos ( x ) + ( x 3 − 6 x ) sin ( x ) + C \int x^3\cos(x)dx= (3x^2-6 )\cos(x) + (x^3-6x)\sin(x)+C ∫x3cos(x)dx=(3x2−6)cos(x)+(x3−6x)sin(x)+C | |
∫ x 3 sin ( x ) d x = ( 3 x 2 − 6 ) sin ( x ) − ( x 3 − 6 x ) cos ( x ) + C \int x^3 \sin(x)dx= (3x^2 - 6)\sin(x) - (x^3 - 6x)\cos(x) + C ∫x3sin(x)dx=(3x2−6)sin(x)−(x3−6x)cos(x)+C | |
∫ a x d x = 1 ln ( a ) a x + C \int a^xdx=\frac{1}{\ln(a)}a^x+C ∫axdx=ln(a)1ax+C | a x = e l n ( a ) x a^x=e^{ln(a)x} ax=eln(a)x |
∫ x e x d x = ( x − 1 ) e x + C \int xe^xdx=(x-1)e^x+C ∫xexdx=(x−1)ex+C | 分部积分法 |
∫ x 2 e x d x = ( x 2 − 2 x + 2 ) e x + C \int x^2e^xdx=(x^2-2x+2)e^x+C ∫x2exdx=(x2−2x+2)ex+C | 分部积分法 |
∫ x 3 e x d x = ( x 3 − 3 x 2 + 6 x − 6 ) e x + C \int x^3e^xdx=(x^3-3x^2+6x-6)e^x+C ∫x3exdx=(x3−3x2+6x−6)ex+C | 分部积分法 |
∫ e a x sin ( b x ) d x = a sin ( b x ) − b cos ( b x ) a 2 + b 2 e a x \int e^{ax}\sin(bx)dx=\frac{a\sin(bx)-b\cos(bx)}{a^2+b^2}e^{ax} ∫eaxsin(bx)dx=a2+b2asin(bx)−bcos(bx)eax | 分部积分法 |
∫ e a x cos ( b x ) d x = a cos ( b x ) + b sin ( b x ) a 2 + b 2 e a x \int e^{ax}\cos(bx)dx=\frac{a\cos(bx)+b\sin(bx)}{a^2+b^2}e^{ax} ∫eaxcos(bx)dx=a2+b2acos(bx)+bsin(bx)eax | 分部积分法 |
∫ ln ( x ) d x = x ( ln x − 1 ) + C \int \ln(x)dx=x(\ln x-1)+C ∫ln(x)dx=x(lnx−1)+C | 分部积分法 |
∫ x ln ( x ) d x = 1 4 x 2 ( 2 ln x − 1 ) + C \int x \ln(x)dx=\frac{1}{4}x^2(2\ln x-1)+C ∫xln(x)dx=41x2(2lnx−1)+C | 分部积分法 |
定积分
公式 | 方法 |
---|---|
∫ 0 ∞ x n e x d x = n ! \int_0^\infty x^ne^xdx=n! ∫0∞xnexdx=n! | |
∫ 0 π 2 sin 2 n + 1 ( x ) d x = ( 2 n ) ! ! ( 2 n + 1 ) ! ! ∫ 0 π 2 sin 2 n ( x ) d x = π 2 ( 2 n ) ! ! ( 2 n + 1 ) ! ! n ≥ 0 \int_0^{\frac{\pi}{2}} \sin^{2n+1}(x)dx=\frac{(2n)!!}{(2n+1)!!}\\\int_0^{\frac{\pi}{2}} \sin^{2n}(x)dx=\frac{\pi}{2}\frac{(2n)!!}{(2n+1)!!}\\n\ge0 ∫02πsin2n+1(x)dx=(2n+1)!!(2n)!!∫02πsin2n(x)dx=2π(2n+1)!!(2n)!!n≥0 | |
∫ 0 2 π sin ( k x ) sin ( m x ) d x = π δ k m ∫ 0 2 π cos ( k x ) cos ( m x ) d x = π δ k m ∫ 0 2 π sin ( k x ) cos ( m x ) d x = 0 k , m > 0 \int_0^{2\pi}\sin(kx)\sin(mx)dx=\pi\delta_{km}\\\int_0^{2\pi}\cos(kx)\cos(mx)dx=\pi\delta_{km}\\\int_0^{2\pi}\sin(kx)\cos(mx)dx=0\\k,m > 0 ∫02πsin(kx)sin(mx)dx=πδkm∫02πcos(kx)cos(mx)dx=πδkm∫02πsin(kx)cos(mx)dx=0k,m>0 | δ k m \delta_{km} δkm是克罗内克函数,仅当 k = m k=m k=m时值为1,其他情况值为0 |
∫ − ∞ ∞ e − x 2 d x = π \int_{-\infty}^\infty e^{-x^2}dx= \sqrt{\pi} ∫−∞∞e−x2dx=π | 极坐标变换 ∬ R 2 e − x 2 − y 2 d x d y = ∫ 0 ∞ ∫ 0 2 π e − r 2 r d θ d r \iint_{R^2} e^{-x^2-y^2}dxdy=\int_0^\infty \int_0^{2\pi}e^{-r^2}rd\theta dr ∬R2e−x2−y2dxdy=∫0∞∫02πe−r2rdθdr |
∫ 0 ∞ e − x 2 cos ( x ) d x = π 2 e − 1 4 \int_0^\infty e^{-x^2}\cos(x)dx={\frac{\sqrt\pi}{2}}e^{\frac{-1}{4}} ∫0∞e−x2cos(x)dx=2πe4−1 | 费曼积分法 ∫ 0 ∞ e − a x 2 cos ( b x ) d x = π 4 a e − b 2 4 a \int_0^\infty e^{-ax^2}\cos(bx)dx=\sqrt{\frac{\pi}{4a}}e^{\frac{-b^2}{4a}} ∫0∞e−ax2cos(bx)dx=4aπe4a−b2 |
∫ − ∞ ∞ sin ( x ) x d x = π \int_{-\infty}^\infty \frac{\sin(x)}{x}dx=\pi ∫−∞∞xsin(x)dx=π | 费曼积分法 ∫ 0 ∞ s i n ( x ) x e − a x d x = − arctan ( a ) + π 2 \int_0^\infty \frac{sin(x)}{x}e^{-ax}dx=-\arctan(a)+\frac{\pi}{2} ∫0∞xsin(x)e−axdx=−arctan(a)+2π |
∫ 0 π ln ( 1 + cos x ) d x = π ln 2 \int_0^\pi\ln(1+\cos x)dx=\pi\ln 2 ∫0πln(1+cosx)dx=πln2 | 费曼积分法 ∫ 0 π ln ( 1 + a cos x ) d x = π ln ∣ 1 + 1 − a 2 2 ∣ \int_0^\pi\ln(1+a\cos x)dx=\pi\ln|\frac{1+\sqrt{1-a^2}}{2}| ∫0πln(1+acosx)dx=πln∣21+1−a2∣ |
常微分方程
名称 | 方程 | 通解 |
---|---|---|
分离变量法 | d y d x = f ( x ) g ( y ) \frac{dy}{dx}=\frac{f(x)}{g(y)} dxdy=g(y)f(x) | ∫ g ( y ) d y = ∫ f ( x ) d x + C \int g(y)dy = \int f(x) dx +C ∫g(y)dy=∫f(x)dx+C |
齐次微分方程 | d y d x = f ( y x ) \frac{dy}{dx}=f(\frac{y}{x}) dxdy=f(xy) | ∫ d u f ( u ) − u = ∫ d x x + C \int \frac{du}{f(u)-u} = \int \frac{ dx}{x} +C ∫f(u)−udu=∫xdx+C其中 u = y / x u=y/x u=y/x |
一阶线性微分方程 | d y d x + P ( x ) y = Q ( x ) \frac{dy}{dx}+P(x)y=Q(x) dxdy+P(x)y=Q(x) | y = e − ∫ P ( x ) d x ( ∫ Q ( x ) e ∫ P ( x ) d x d x + C ) y=e^{-\int P(x)dx}(\int Q(x)e^{\int P(x)dx}dx+C) y=e−∫P(x)dx(∫Q(x)e∫P(x)dxdx+C) |
伯努利方程 | d y d x + P ( x ) y = Q ( x ) y n \frac{dy}{dx}+P(x)y=Q(x)y^n dxdy+P(x)y=Q(x)yn | 令 z = y 1 − n , n ≠ 1 z=y^{1-n}, n \ne 1 z=y1−n,n=1,则 d z d x + ( 1 − n ) P ( x ) z = ( 1 − n ) Q ( x ) \frac{dz}{dx}+(1-n)P(x)z=(1-n)Q(x) dxdz+(1−n)P(x)z=(1−n)Q(x) |
常系数线性微分方程 | y ′ ′ + b y ′ + c y = 0 y''+by'+cy=0 y′′+by′+cy=0 | y = { ( C 1 + C 2 x ) e p x , p = q C 1 e p x + C 2 e q x , p ≠ q ( C 1 cos β x + C 2 sin β x ) e α x , p = q ‾ = α + i β y=\begin{cases} (C_1+C_2x)e^{px}, p = q \\C_1e^{px}+C_2e^{qx}, p \ne q\\(C_1 \cos \beta x+ C_2 \sin \beta x)e^{\alpha x}, p = \overline q = \alpha + i\beta \end{cases} y=⎩ ⎨ ⎧(C1+C2x)epx,p=qC1epx+C2eqx,p=q(C1cosβx+C2sinβx)eαx,p=q=α+iβ 其中 p , q p,q p,q是方程 x 2 + b x + c = 0 x^2+bx+c=0 x2+bx+c=0的根 |
欧拉方程 | x 2 y ′ ′ + b x y ′ + c y = f ( x ) x^2y''+bxy'+cy=f(x) x2y′′+bxy′+cy=f(x) | 令 x = e t x=e^t x=et,则 d y d x = 1 x d d t y , d 2 y d x 2 = 1 x 2 d d t ( d d t − 1 ) y , d 3 y d x 3 = 1 x 3 d d t ( d d t − 1 ) ( d d t − 2 ) y \frac{dy}{dx}=\frac{1}{x}\frac{d}{dt}y,\\ \frac{d^2y}{dx^2}=\frac{1}{x^2}\frac{d}{dt}(\frac{d}{dt}-1)y,\\ \frac{d^3y}{dx^3}=\frac{1}{x^3}\frac{d}{dt}(\frac{d}{dt}-1)(\frac{d}{dt}-2)y dxdy=x1dtdy,dx2d2y=x21dtd(dtd−1)y,dx3d3y=x31dtd(dtd−1)(dtd−2)y 简化为常系数微分方程 |
多重积分、曲线与曲面积分
名称 | 定义 |
---|---|
二重积分极坐标转换 | ∬ S f ( x , y ) d x d y = ∬ S f ( r cos θ , r sin θ ) r d r d θ \iint_S f(x,y)\ dx\ dy=\iint_S f(r\cos \theta,r \sin \theta)r\ dr\ d\theta ∬Sf(x,y) dx dy=∬Sf(rcosθ,rsinθ)r dr dθ |
三重积分球坐标转换 | ∭ V f ( x , y , z ) d x d y d z = ∭ V f ( r cos θ sin φ , r sin θ sin φ , r cos φ ) r 2 sin φ d r d θ d φ \iiint_V f(x,y,z)\ dx\ dy\ dz=\iiint_V f(r\cos \theta \sin\varphi,r \sin \theta \sin\varphi, r\cos \varphi)r^2 \sin \varphi \ dr\ d\theta \ d\varphi ∭Vf(x,y,z) dx dy dz=∭Vf(rcosθsinφ,rsinθsinφ,rcosφ)r2sinφ dr dθ dφ |
第一类曲线积分 | ∫ L f ( x , y ) d s = ∫ a b f [ x ( t ) , y ( t ) ] x ′ 2 ( t ) + y ′ 2 ( t ) d t \int_L f(x,y)ds=\int_a^b f[x(t),y(t)]\sqrt{x'^2(t)+y'^2(t)}dt ∫Lf(x,y)ds=∫abf[x(t),y(t)]x′2(t)+y′2(t)dt |
第二类曲线积分 | ∫ L ( P ( x , y ) , Q ( x , y ) ) ⋅ d L ⃗ = ∫ L P d x + Q d y = ∫ a b [ P x ′ ( t ) + Q y ′ ( t ) ] d t \int_L (P(x,y),Q(x,y))\cdot d\vec L=\int_L Pdx+Qdy=\int_a^b [Px'(t)+Qy'(t)]dt ∫L(P(x,y),Q(x,y))⋅dL=∫LPdx+Qdy=∫ab[Px′(t)+Qy′(t)]dt d L ⃗ = v ⃗ d L d \vec L = \vec v dL dL=vdL 表示带方向的线微元, v ⃗ \vec v v是线的单位向量 |
第一类曲面积分 | ∬ S f ( x , y ) d S = ∬ D f ( x , y ) 1 + z ′ 2 ( x ) + z ′ 2 ( y ) d x d y \iint_S f(x,y)dS=\iint_D f(x,y)\sqrt{1+z'^2(x)+z'^2(y)}dxdy ∬Sf(x,y)dS=∬Df(x,y)1+z′2(x)+z′2(y)dxdy |
第二类曲面积分 | ∬ S ( P , Q , R ) ⋅ d S ⃗ = ∬ D y z P d y d z − ∬ D x z Q d x d z + ∬ D x y R d x d z \iint_S (P,Q,R)\cdot d \vec S=\iint_{Dyz}Pdydz-\iint_{Dxz}Qdxdz+\iint_{Dxy}Rdxdz ∬S(P,Q,R)⋅dS=∬DyzPdydz−∬DxzQdxdz+∬DxyRdxdz d S ⃗ = n ⃗ s d S d \vec S = \vec n_s dS dS=nsdS 表示带方向的曲面微元, n ⃗ s \vec n_s ns是单位法向量 |
哈密顿算子 | ∇ = i ∂ ∂ x + j ∂ ∂ y + k ∂ ∂ z \nabla=i \frac\partial{\partial x} + j \frac\partial{\partial y} +k \frac\partial{\partial z} ∇=i∂x∂+j∂y∂+k∂z∂ |
梯度 | g r a d ( f ) = ∇ f = i ∂ f ∂ x + j ∂ f ∂ y + k ∂ f ∂ z grad(f)=\nabla f=i \frac{\partial f}{\partial x} + j \frac{\partial f}{\partial y} +k \frac{\partial f}{\partial z} grad(f)=∇f=i∂x∂f+j∂y∂f+k∂z∂f |
散度 | d i v ( f ⃗ ) = ∇ ⋅ f ⃗ = ∂ f x ∂ x + ∂ f y ∂ y + ∂ f z ∂ z div(\vec f)=\nabla \cdot \vec f=\frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} +\frac{\partial f_z}{\partial z} div(f)=∇⋅f=∂x∂fx+∂y∂fy+∂z∂fz |
旋度 | c u r l ( f ⃗ ) = ∇ × f ⃗ = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z f x f y f z ∣ curl(\vec f)=\nabla \times \vec f = \begin{vmatrix}i&j&k\\\frac\partial{\partial x}&\frac\partial{\partial y}&\frac\partial{\partial z}\\f_x&f_y&f_z\end{vmatrix} curl(f)=∇×f= i∂x∂fxj∂y∂fyk∂z∂fz |
拉普拉斯算子 | ∇ 2 f = ∇ ⋅ ( ∇ f ) = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 + ∂ 2 f ∂ z 2 \nabla ^2 f=\nabla \cdot (\nabla f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} +\frac{\partial^2 f}{\partial z^2} ∇2f=∇⋅(∇f)=∂x2∂2f+∂y2∂2f+∂z2∂2f |
高斯公式 | ∯ S f ⃗ ⋅ d S ⃗ = ∭ v ∇ ⋅ f ⃗ d V \oiint_S \vec f \cdot d \vec S=\iiint_v \nabla \cdot \vec f dV ∬Sf⋅dS=∭v∇⋅fdV |
格林公式 | ∮ Γ f x d x + f y d y = ∬ S ( ∂ f y ∂ x − ∂ f x ∂ y ) d x d y \oint_\Gamma f_x dx+f_y dy = \iint_S (\frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y}) dxdy ∮Γfxdx+fydy=∬S(∂x∂fy−∂y∂fx)dxdy |
经典斯托克斯公式 | ∮ L f ⃗ ⋅ d L ⃗ = ∬ S ∇ × f ⃗ ⋅ d S ⃗ \oint_L \vec f \cdot d \vec L = \iint_S \nabla \times \vec f \cdot d \vec S ∮Lf⋅dL=∬S∇×f⋅dS |
广义斯托克斯公式 | ∮ ∂ S ω = ∫ S d ω \oint_{\partial S} \omega=\int_S d\omega ∮∂Sω=∫Sdω S S S是 k k k维流形, ∂ S {\partial S} ∂S是其边界, d ω d\omega dω是 ω \omega ω的外微分 |
广义斯托克斯公式 是 微积分基本定理、高斯公式,格林公式,经典斯托克斯公式 的推广。
相关介绍
傅里叶级数
f
N
(
x
)
=
a
0
2
+
∑
n
=
1
N
(
a
0
cos
2
π
n
x
L
+
b
0
sin
2
π
n
x
L
)
=
∑
n
=
−
N
N
c
n
e
2
i
π
n
x
L
f_N(x)=\frac{a_0}{2}+\sum_{n=1}^N(a_0\cos \frac {2\pi n x}{L}+b_0\sin \frac {2\pi n x}{L})=\sum_{n=-N}^{N}c_ne^{\frac{2i\pi n x}{L}}
fN(x)=2a0+n=1∑N(a0cosL2πnx+b0sinL2πnx)=n=−N∑NcneL2iπnx
其中
L
L
L是周期函数
f
(
x
)
f(x)
f(x)的周期,
a
n
=
2
L
∫
0
L
f
(
x
)
cos
(
2
π
n
L
x
)
d
x
a_n=\frac{2}{L}\int_0^L f(x)\cos (\frac{2\pi n}{L}x) dx
an=L2∫0Lf(x)cos(L2πnx)dx,
b
n
=
2
L
∫
0
L
f
(
x
)
sin
(
2
π
n
L
x
)
d
x
b_n=\frac{2}{L}\int_0^L f(x)\sin (\frac{2\pi n}{L}x) dx
bn=L2∫0Lf(x)sin(L2πnx)dx,
c
n
=
1
L
∫
0
L
f
(
x
)
exp
(
−
2
π
n
L
x
)
d
x
c_n=\frac{1}{L}\int_0^L f(x)\exp (-\frac{2\pi n}{L}x) dx
cn=L1∫0Lf(x)exp(−L2πnx)dx
帕塞瓦尔恒等式: 如果
f
(
x
)
f(x)
f(x)的周期为
2
π
2\pi
2π, 则有
∑
n
=
−
∞
+
∞
∣
c
n
∣
2
=
1
2
π
∫
−
π
π
∣
f
(
x
)
∣
2
d
x
\sum_{n=-\infty}^{+\infty}|c_n|^2=\frac{1}{2\pi}\int_{-\pi}^\pi |f(x)|^2dx
n=−∞∑+∞∣cn∣2=2π1∫−ππ∣f(x)∣2dx
函数,定义域 − π < x ≤ π -\pi < x \le \pi −π<x≤π | 傅里叶级数 |
---|---|
冲激函数 δ ( t ) \delta(t) δ(t) | cos ( x ) + cos ( 2 x ) + cos ( 3 x ) + cos ( 4 x ) + . . . \cos(x)+\cos(2x)+\cos(3x)+\cos(4x)+... cos(x)+cos(2x)+cos(3x)+cos(4x)+... |
符号函数 s g n ( x ) sgn(x) sgn(x) | 4 π ( sin x 1 + sin 3 x 3 + sin 5 x 5 + sin 7 x 7 + . . . ) \frac{4}{\pi}(\frac{\sin x}{1}+\frac{\sin 3x}{3}+\frac{\sin 5x}{5}+\frac{\sin 7x}{7}+...) π4(1sinx+3sin3x+5sin5x+7sin7x+...) |
x x x | 2 ( sin x 1 − sin 2 x 2 + sin 3 x 3 − sin 4 x 4 + . . . ) 2(\frac{\sin x}{1} -\frac{ \sin 2x}{2} + \frac {\sin 3x}{3} - \frac {\sin 4x}{4} + ...) 2(1sinx−2sin2x+3sin3x−4sin4x+...) |
∣ x ∣ |x| ∣x∣ | π 2 − 4 π ( cos x 1 + cos 3 x 3 2 + sin 5 x 5 2 + sin 7 x 7 2 + . . . ) \frac{\pi}{2}-\frac{4}{\pi}(\frac{\cos x}{1}+\frac{\cos 3x}{3^2}+\frac{\sin 5x}{5^2}+\frac{\sin 7x}{7^2}+...) 2π−π4(1cosx+32cos3x+52sin5x+72sin7x+...) |
x 2 x^2 x2 | π 2 3 + 4 ( cos x 1 2 − cos 2 x 2 2 + cos 3 x 3 2 − cos 4 x 4 2 + . . . ) \frac{\pi^2}{3}+4(\frac{\cos x}{1^2}-\frac{\cos 2x}{2^2}+\frac{\cos 3x}{3^2}-\frac{\cos 4x}{4^2}+...) 3π2+4(12cosx−22cos2x+32cos3x−42cos4x+...) |
∣ cos x ∣ |\cos x| ∣cosx∣ | 4 π ( 1 2 + cos 2 x 2 2 − 1 − cos 4 x 4 2 − 1 + sin 6 x 6 2 − 1 − sin 8 x 8 2 − 1 + . . . ) \frac{4}{\pi}(\frac{1}{2}+\frac{\cos 2x}{2^2-1}-\frac{\cos 4x}{4^2-1}+\frac{\sin 6x}{6^2-1}-\frac{\sin 8x}{8^2-1}+...) π4(21+22−1cos2x−42−1cos4x+62−1sin6x−82−1sin8x+...) |
拉普拉斯变换
函数 | 拉普拉斯变换 |
---|---|
f ( t ) f(t) f(t) | L [ f ( t ) ] = ∫ 0 + ∞ f ( t ) e s t d t L[f(t)]=\int_0^{+\infty}f(t)e^{st}dt L[f(t)]=∫0+∞f(t)estdt |
f ′ ( t ) f'(t) f′(t) | s L [ f ( t ) ] − f ( 0 ) sL[f(t)]-f(0) sL[f(t)]−f(0) |
f ′ ′ ( t ) f''(t) f′′(t) | s 2 L [ f ( t ) ] − s f ( 0 ) − f ′ ( 0 ) s^2L[f(t)]-sf(0)-f'(0) s2L[f(t)]−sf(0)−f′(0) |
∫ 0 t f ( τ ) d τ \int_0^t f(\tau)d\tau ∫0tf(τ)dτ | 1 s L [ f ( t ) ] \frac{1}{s}L[f(t)] s1L[f(t)] |
t n f ( t ) t^nf(t) tnf(t) | ( − 1 ) n d n d s n L [ f ( t ) ] (-1)^n\frac{d^n}{ds^n}L[f(t)] (−1)ndsndnL[f(t)] |
1 t f ( t ) \frac{1}{t}f(t) t1f(t) | ∫ s + ∞ L [ f ( t ) ] d s \int_s^{+\infty}L[f(t)]ds ∫s+∞L[f(t)]ds |
∫ 0 t f ( t − u ) g ( u ) d u \int_0^t f(t-u) g(u)du ∫0tf(t−u)g(u)du | L [ f ( t ) ] L ( g ( t ) ] L[f(t)]L(g(t)] L[f(t)]L(g(t)] |
冲激函数 δ ( t ) \delta(t) δ(t) | 1 1 1 |
1 1 1 | 1 s \frac{1}{s} s1 |
t n t^n tn | n ! s n + 1 \frac{n!}{s^{n+1}} sn+1n! |
e a t e^{at} eat | 1 s − a \frac{1}{s-a} s−a1 |
sin a t \sin{at} sinat | a s 2 + a 2 \frac{a}{s^2+a^2} s2+a2a |
cos a t \cos{at} cosat | s s 2 + a 2 \frac{s}{s^2+a^2} s2+a2s |
sinh a t \sinh{at} sinhat | a s 2 − a 2 \frac{a}{s^2-a^2} s2−a2a |
cosh a t \cosh{at} coshat | s s 2 − a 2 \frac{s}{s^2-a^2} s2−a2s |
e − b t sin a t e^{-bt}\sin at e−btsinat | a ( s + b ) 2 + a 2 \frac{a}{(s+b)^2+a^2} (s+b)2+a2a |
e − b t cos a t e^{-bt}\cos at e−btcosat | s + b ( s + b ) 2 + a 2 \frac{s+b}{(s+b)^2+a^2} (s+b)2+a2s+b |
ln ( t ) \ln(t) ln(t) | − 1 s ( ln ( s ) + γ ) -\frac{1}{s}(\ln(s)+\gamma) −s1(ln(s)+γ) |
贝赛尔函数 J n ( a t ) J_n(at) Jn(at) | ( s 2 + a 2 − s ) n a n s 2 + a 2 \frac{(\sqrt{s^2+a^2}-s)^n}{a^n\sqrt{s^2+a^2}} ans2+a2(s2+a2−s)n |
高斯误差函数 e r f ( t ) erf(t) erf(t) | 1 s e s 2 4 ( 1 − e r f s 2 ) \frac{1}{s}e^{s^2}{4}(1-erf\frac {s}{2}) s1es24(1−erf2s) |
总结
本文列举了微积分入门级的知识,希望对大家有所帮助。
因篇幅问题,1.大多数公式都缺少详细说明或证明;2.除了上述内容,还有变分法、偏微分方程、微分几何、复变函数积分等内容未曾提及。这些内容也会单独进行介绍,敬请期待。
写这博客源自于我对数学的喜好,对学过的数学知识进行积累,温故而知新。如果有缺漏或错误的,可以在评论区指出。