元素与集合的含义
元素:我们把研究对象统称为元素.
(数组里的数我们通常也叫元素)
集合:把一些元素组成的总体叫做集合(简称为集)。
集合的三个特性:描述性、整体性、广泛性。
表示:通常用大写拉丁字母A.B.C,…表示集合;用小写拉丁字母a.b.c,…表始的不加定义的概念,它同示集合中的元素。
集合中元素的特性
确定性:对于一个给定的集合,它的元素是确定的,任何一个元素是或者不性的说明
是这个给定的集合的元素。
互异性:任何一个给定的集合中,任意两个元素都是不同的,相同的元素归入同一集合时,仅算一个元素。
无序性:集合中的元素没有先后顺序,是平等的。、
元素与集合的关系
元素与集合的关系 | 记法 | 读法 |
a是集合A中的元素 | a∈A | a属于集合A |
a不是集合A中的元素 | a∉A | a不属于集合A |
常用数集及其记法
数集 | 非负整数集(自然数集) | 正整数集 | 整数集 | 有理数集 | 实数集 |
记法 | N | N*或者N+ | Z | Q | R |
集合的表示方法
1.列举法
2.描述法
3.图示法