投影矩阵之z坐标推导

看了好几篇关于投影矩阵的文章,在z坐标的推导上,没有提到为什么z'和1/z成线性关系,而是通过结论中的投影矩阵,即已知z'= (zA + B)/w,并且x和x',y和y'关系式中分母都有-z,所以w为-z,然后(-n,-f)映射到(-1,1),求出A、B,得到z'和z的关系。

这是用结论去反推过程,过程再得到结论,这样的逻辑我觉得不对,我认为,应该是先得到x,y,z各自的关系式,才去构造出投影矩阵。

 

推导x,y坐标

向量投影到近平面,然后映射到NDC,就可以得到,在此不赘述。

(下文Ze同Z,都是投影前向量坐标(观察空间坐标))

Image_Projection_1.1

式1.1

Image_Projection_1.2

式1.2

 

重点讨论如何推导z坐标

z坐标的转换关系,并不是投影得到的,而是根据我们的需要:

1、表示物体原有的前后关系。

2、映射到标准设备坐标,从(-n,-f)映射到(-1,1)(使用右手坐标系)。

3、近处精度更大;因为精度有限,当场景中有许多物体时,按照重要程度来说,首先保证近处物体前后关系是正确;所以要让近处物体的z坐标有更大的表示范围。

 

关键在于3,在这篇文章(https://learnopengl-cn.github.io/04%20Advanced%20OpenGL/01%20Depth%20testing/#_3)中的深度精度部分有提到,如何让近处有更大表示范围,文章中是映射到(0,1),映射到(-1, 1)也是一样的道理。

这里我认为,不只是z' = A*1/z + B可以达到我们的需求,z' = A*1/z² + B也可以,还可以构造很多关系式都可以达到我们的需求,但是我们的最终目标是构造一个投影矩阵,投影矩阵*向量/齐次坐标=映射后的向量。

 

整理式1.1,式1.2

Image_Projection_2.1

式2.1

Image_Projection_2.2

式2.2

 

整理后,式2.1、式2.2分母都有Ze,因此选择z'(NDC) = A*1/z(观察空间) + B,即可以和x,y的关系式对应起来,又满足我们的需求

(2019.08.15补充:使用1/z还有一个重要的原因在于,光栅化时,需要进行透视校正插值,因为z'(NDC)与1/z(观察空间)是线性关系(证明:https://www.cnblogs.com/cys12345/archive/2009/03/16/1413821.html或《3D游戏与计算机图形学中的数学方法》 第3版,第5.4章节),所以z'(NDC) = A*1/z(观察空间) + B,另外,如果z'(NDC)直接保存为z(观察空间) ,等到进行透视校正插值,再进行转换,这样做是不好的,因为透视校正插值是逐片元操作,就要重复非常多次的运算,直接保存为A*1/z(观察空间) + B,是逐顶点操作,运算次数就少很多)

z'(NDC) = A*1/z + B,(-n, -f)映射到(-1,1)

Image_Projection_2.3

式2.3

 

式2.1,式2.2,式2.3就可以整理出投影矩阵(负号提取到分母)

Image_Projection_3

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值