10、软件开发中的单元工作模式与聚合模式解析

软件开发中的单元工作模式与聚合模式解析

单元工作模式的清理与实践

在软件开发过程中,有时需要释放任意数量的行。若在任何阶段出现失败,可能希望不提交任何更改。当前有三组测试,分别为 test_orm.py test_repository.py test_uow.py ,它们本质上都指向数据库。

测试结构如下:

└── tests
    ├── conftest.py
    ├── e2e
    │   └── test_api.py
    ├── integration
    │   ├── test_orm.py
    │   ├── test_repository.py
    │   └── test_uow.py
    ├── pytest.ini
    └── unit
        ├── test_allocate.py
        ├── test_batches.py
        └── test_services.py

如果认为某些测试长期来看不会增加价值,可随时丢弃。 test_orm.py 主要是帮助学习 SQLAlchemy 的工具,从长期来看可能不再需要,特别是当它的主要功能已在 test_repository.py 中涵盖时。对于 test_repository.py ,可以保留,但也可以考虑将所有测试保持在尽可能高的抽象级别。

Matlab基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率内容概要:本文围绕Matlab在电力系统优化控制领域的应用展开,重点介绍了基于粒子群优化算法(PSO)和鲁棒MPPT控制器提升光伏并网效率的技术方案。通过Matlab代码实现,结合智能优化算法先进控制策略,对光伏发电系统的最大功率点跟踪进行优化,有效提高了系统在不同光照条件下的能量转换效率和并网稳定性。同时,文档还涵盖了多种电力系统应用场景,如微电网调度、储能配置、鲁棒控制等,展示了Matlab在科研复现工程仿真中的强大能力。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事新能源系统开发的工程师;尤其适合关注光伏并网技术、智能优化算法应用MPPT控制策略研究的专业人士。; 使用场景及目标:①利用粒子群算法优化光伏系统MPPT控制器参数,提升动态响应速度稳态精度;②研究鲁棒控制策略在光伏并网系统中的抗干扰能力;③复现已发表的高水平论文(如EI、SCI)中的仿真案例,支撑科研项目学术写作。; 阅读建议:建议结合文中提供的Matlab代码Simulink模型进行实践操作,重点关注算法实现细节系统参数设置,同时参考链接中的完整资源下载以获取更多复现实例,加深对优化算法控制系统设计的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值