卡尔曼是真的强,我只能这么说,前面说了卡尔曼滤波,它是针对线性系统的滤波方法。但在实际工作中,我们的系统几乎都是非线性的,所以如何解决非线性系统的滤波问题呢,这就是我们要讲的EKF(扩展卡尔曼滤波),它的原理很简单,就是在估计状态的地方进行线性化,线性化的方法也很简单,只需要进行泰勒的一阶展开就行。当然我们也要说一下缺点,因为我们选择的线性化方法,所以只能达到二阶的精度(UKF可以达到四阶的精度),所以要求我们的系统是弱线性化的。其实UKF也是对非线性系统的卡尔曼滤波,主要本人对其线性化方法(UT变换)不是很理解,等考完试再说。
首先,系统的状态方程和观测方程如下:
我们知道,在更新误差协方差矩阵的时候,不能直接用f和h的,所以我们要进行泰勒展开,也就是要求雅克比矩阵。再利用线性情况下的卡尔曼滤波进行计算更新。
预测:
利用雅克比矩阵进行更新模型:
更新:
下面我会展示一个目标追踪的EKF例子:
结果如下:
我们知道,在更新误差协方差矩阵的时候,不能直接用f和h的,所以我们要进行泰勒展开,也就是要求雅克比矩阵。再利用线性情况下的卡尔曼滤波进行计算更新。
预测:
利用雅克比矩阵进行更新模型:
更新:
下面我会展示一个目标追踪的EKF例子:
12/05/16 01:22:15 /home/fc/桌面/EKF/EKF.m
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|