Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ iy ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S 1, S 2, S 3, S 4 ... S x, ... S n (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ S x ≤ 32767). We define a function sum(i, j) = S i + ... + S j (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i 1, j 1) + sum(i 2, j 2) + sum(i 3, j 3) + ... + sum(i m, j m) maximal (i x ≤ iy ≤ j x or i x ≤ j y ≤ j x is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(i x, j x)(1 ≤ x ≤ m) instead. ^_^
Process to the end of file.
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
6
8
Huge input, scanf and dynamic programming is recommended.
又到了被动态规划虐脑的时候了。。
崩溃T^T
#include<iostream> #include<cstdio> #include<cstring> using namespace std; const int INF=0x3f3f3f3f; int a[1123456]; int dp[1123456]; int mm[1123456]; int main() { int n,m; while(~scanf("%d%d",&m,&n)) { int i,j; for(i=1;i<=n;i++) { scanf("%d",&a[i]); mm[i]=0; dp[i]=0; } dp[0]=0; mm[0]=0; int ma; for(i=1;i<=m;i++) { ma=-INF; for(j=i;j<=n;j++) { dp[j]=max(dp[j-1]+a[j],mm[j-1]+a[j]);//dp[j-1]表示的是以j-1结尾i个子段的和..mm[j-1]表示前j-1个元素i-1个子段的和 mm[j-1]=ma;//保证a[i]是一个独立的子段 ma=max(ma,dp[j]); } } printf("%d\n",ma); } return 0; }