Max Sum Plus Plus HDU - 1024(DP)

本文介绍了一个使用动态规划解决的最大化分组求和问题。通过递推方程dp[i,j]=max(dp[i-1,j]+v[i],max(dp[k,j-1])+v[i])(j<k<i),实现了将n个数分成m组,使得这m组数的和最大。文章还提供了完整的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意

将n个数分成不相交的m组,使得这m组数的和最大。求这个最大的和。

思路

动态规划
决策:第i个数到底应该自成一组还是并到前面的那一组。
列写递推方程:dp[i,j] = max(dp[i-1, j] + v[i], max(dp[k, j-1]) + v[i]) (j < k < i)
解释:dp[i, j]表示前i个数分成j组的最优方案。max(dp[i-1, j] + v[i], max(dp[k, j-1]) + v[i])是一个决策过程。dp[i-1, j] + v[i]是与前面的数合并成一组。max(dp[k, j-1]) + v[i])是自成一组并且k的范围暗示了该组不与前一个数相连。当然相连的话自成一组也是没有意义的。

代码

// 状态转移方程(前i个数分成j个组) : dp[i,j] = max(dp[i-1, j] + v[i], max(dp[k, j-1]) + v[i]) (j < k < i)
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <climits>
using namespace std;

const int maxn = 1e6 + 10;

int v[maxn];
int dp[maxn];
int numax[maxn];    // numax[i]表示在i之前(包含i)dp的最大值,相当于状态转移方程中的max(dp[k, j-1])

int main() {
   // freopen("input.txt", "r", stdin);
    int n, m;
    while(~scanf("%d%d", &m, &n)) {
        for(int i = 1; i <= n; i++) {
            scanf("%d", &v[i]);
            numax[i] = 0;
            dp[i] = 0;
        }
        numax[0] = 0;
        dp[0] = 0;
        int q;
        for(int j = 1; j <= m; j++) {
            q = INT_MIN;
            for(int i = j; i <= n; i++) {
                dp[i] = max(dp[i-1], numax[i-1]) + v[i];
                numax[i-1] = q;
                q = max(q, dp[i]);
            }
        }
        printf("%d\n", q);
    }
    return 0;
}
### HDU 4190 编程问题解析 针对HDU-4190这一特定编程挑战,该题目属于动态规划(DP)类问题[^3]。这类问题通常涉及寻找最优路径或者计算最优化的结果,在给定约束条件下实现目标最大化或最小化。 对于此题目的具体描述提到的是一个数塔结构,其中要求从顶部到底部移动,并且每次只能前往相邻节点,最终目的是使得所经过节点数值总和达到最大值。解决此类问题的关键在于理解如何有效地利用已知条件来构建解决方案: #### 动态规划算法设计 为了高效求解这个问题,可以采用自底向上的方法来进行动态规划处理。通过定义状态转移方程,逐步累积中间结果直至获得全局最优解。 ```python def max_sum_path(triangle): n = len(triangle) # 初始化dp数组用于存储各层的最大累加和 dp = [[0]*i for i in range(1, n+1)] # 设置起点即三角形顶端元素作为初始值 dp[0][0] = triangle[0][0] # 填充dp表 for level in range(1, n): for pos in range(level + 1): if pos == 0: dp[level][pos] = dp[level - 1][pos] + triangle[level][pos] elif pos == level: dp[level][pos] = dp[level - 1][pos - 1] + triangle[level][pos] else: dp[level][pos] = max(dp[level - 1][pos], dp[level - 1][pos - 1]) + triangle[level][pos] return max(dp[-1]) triangle = [ [2], [3, 4], [6, 5, 7], [4, 1, 8, 3] ] print(max_sum_path(triangle)) ``` 上述代码实现了基于输入参数`triangle`(表示数塔的数据结构)的函数`max_sum_path()`,它返回从顶至底所能得到的最大路径和。这里采用了二维列表形式保存每一级的最佳选择情况,从而保证能够快速访问并更新所需的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值