数字图像处理 --- 相机的内参与外参(CV学习笔记)

本文详细介绍了针孔相机模型,包括如何通过外参和内参矩阵将3D世界坐标系和2D像素坐标系进行转换,以及物理成像平面和像素平面的关系。
Pinhole Camera Model(针孔相机模型)

        针孔相机是一种没有镜头、只有一个小光圈的简单相机。 光线穿过光圈并在相机的另一侧呈现倒立的图像。为了建模方便,我们可以把物理成像平面(image plane)上的图像移到实际场景(3D object)和焦点(focal point)之间,把他想象成一个和物理成像平面等大小的虚拟图像平面(Virtual image plane),这样一来就不再是倒立的图像,而是直立图像。

 

        有了相机后,上图中的蓝色盒子就变成了相机,上图中的物理成像平面Image plane也被数字化到由一个个pixel组成的sensor上,并保存下来。因此,对于相机而言,上图中的焦点就是相机的镜头,而上图中的物理成像平面,需要被转换成像素平面(pixel plane),物理成像平面(image plane)与像素平面(pixel plane)大小相同,计量单位不同。物理成像平面的单位是一个物理单位,例如mm,,而像素平面实际上就是一个二维图像,他的单位实际上是某某pixel在图像中的第几行第几列。

为了后续的描述方便我们这里先定义四个坐标系:

1,二维像平面(焦平面)坐标系Image plane,原点为O_{i},坐标轴用x_{i}y_{i}表示。

2,二维图像坐标系pixel plane,原点为O_{p},坐标轴用u_{p}v_{p}表示。

3,三维相机坐标系pinhole plane/camera,原点为O_{c},坐标轴用x_{c}y_{c}z_{c}表示。

4,三维世界坐标系world,原点为O_{w},坐标轴用x_{w}y_{w}z_{w}表示。

        将3D世界场景映射成2D图像(像素平面pixel plane)总共分两步,第一步是把定义在世界坐标系中的实际3D物体映射到3D相机极坐标系中。相当于是把实际世界中的物体分别通过两个不同的坐标系来表示,然后通过找到这两个不同坐标系之间的差异,建立这两个坐标系之间的联系。这一转换关系就是下图中O_{w}O_{c}的转换。

        从3D世界坐标系(world coordinates)到3D相机坐标系(camera coordinates),需要用到外参(extrinsic parameters)或外参矩阵(extrinsic matrix)--->[R t]

        其次,从3D相机坐标系(camera coordinates)到2D像素坐标系(pixel plane)需要用到内参(intrinsic parameters)或内参矩阵(intrinsic matrix)--->K。同样是把成像后的图像,用两个不同的坐标系来表示,然后再建立这两个坐标系(物理成像坐标系与二维图像坐标系)之间的联系,使两者可以相互转换。


extrinsic parameters外参:世界坐标系到相机坐标系的转换

        对于世界坐标系中的某一点大M而言,他本身是存在了,并不会因为我们有没有建立坐标系而受影响。但当我们人为的建立坐标系以后,这个点在我们所定义的坐标系下就有坐标值了。首先,对于点M而言,他在世界坐标系下可表示为M=[x_{w}^{M},y_{w}^{M},z_{w}^{M}],而在相机坐标系中M=[x_{c}^{M},y_{c}^{M},z_{c}^{M}],这是同一个点,只不过在不同的坐标系所对应的坐标值不同。(其中:x_{w}^{M}中的上角标“M”表示点M,下角标"w"表示世界坐标系worl,以此类推,关于下角标的定义可参照我上面定义的四个坐标系。)

         相机坐标系相对于世界坐标系而言,我们不能保证两个坐标系的原点完全重合,因此,对于x-y-z都存在一定的位移,由一个3x1矩阵t(translation)表示,其中每个元素分别对应了x-y-z方向上的位移:

t=\begin{bmatrix} t_{x}\\ t_{y}\\ t_{z} \end{bmatrix}

此外,我们也不能保证相机在拍照时没有任何角度的偏差,因此,这两个坐标系的坐标轴存在一个整体的旋转。由一个3x3矩阵R(rotation)表示:

R=\begin{bmatrix} r_{11} &r_{12} &r_{13} \\ r_{21} &r_{22} &r_{23} \\ r_{31} &r_{32} & r_{33} \end{bmatrix}

二者合并得到增广矩阵[R|t],使得:

[R|t]\begin{bmatrix} x_{w}^{M}\\ y_{w}^{M}\\ z_{w} ^{M}\end{bmatrix}=\begin{bmatrix} x_{c}^{M}\\ y_{c}^{M}\\ z_{c}^{M} \end{bmatrix} 

其中:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值