机器学习算法那些事 | 这是我见过最通俗易懂的SVD(奇异值分解)算法介绍

本文来源公众号“机器学习算法那些事”,仅用于学术分享,侵权删,干货满满。

原文链接:这是我见过最通俗易懂的SVD(奇异值分解)算法介绍

线性代数是机器学习领域的基础,其中一个最重要的概念是奇异值分解(SVD),本文尽可能简洁的介绍SVD(奇异值分解)算法的基础理解,以及它在现实世界中的应用。

SVD是最广泛使用的无监督学习算法之一,它在许多推荐系统和降维系统中居于核心位置,这些系统是全球公司如谷歌、Netflix、Facebook、YouTube等的核心技术。

简单来说,SVD是将一个任意矩阵分解为三个矩阵。所以如果我们有一个矩阵A,那么它的SVD可以表示为:

image-20240808230323995

与特征值分解相比,奇异值分解可以应用于非方阵。在SVD中,U和 V 对于任何矩阵都是可逆的,并且它们是正交归一的,这是我们所喜爱的特性。虽然这里不进行证明,但我们可以告诉你,奇异值比特征值在数值上更稳定。

为了更好地理解,我们通过一个例子演示SVD

奇异值是正特征值的平方根,即5和3。因此非方阵A的SVD分解为:

SVD分解证明

image-20240810203329639

SVD的另一种表述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值