Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 21799 Accepted Submission(s): 13029
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16
Author
CHEN, Gaoli
Source
Recommend
本题不难,先求一遍逆序对,然后逐个枚举情况就好了。
逆序对求法很多,归并排序,树状数组,线段树都可以。
代码如下:
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 5000;
struct node{
int l,r,val;
}tree[maxn*4+10];
int num[maxn+10];
int a[maxn+10];
int n;
void build(int rt, int l, int r){
tree[rt].l = l;
tree[rt].r = r;
tree[rt].val = 0;
if (l==r) return;
int mid = (l+r)/2;
build(rt<<1,l,mid);
build(rt<<1|1,mid+1,r);
}
void update(int rt, int pos){
int l = tree[rt].l;
int r = tree[rt].r;
if (l==r) {num[rt]++; return;}
int mid = (l+r)>>1;
if (pos<=mid) update(rt<<1,pos);
else update(rt<<1|1,pos);
num[rt] = num[rt<<1] + num[rt<<1|1];
}
int query(int rt, int L, int R){
int l = tree[rt].l;
int r = tree[rt].r;
if (L<=l && r<=R) return num[rt];
int mid = (l+r)>>1,ans=0;
if (R>mid) ans += query(rt<<1|1,L,R);
if (L<=mid) ans += query(rt<<1,L,R);
return ans;
}
inline int MIN(int x, int y){return x<y?x:y;}
int main(){
int sum;
while (scanf("%d",&n)!=EOF){
sum = 0;
memset(num,0,sizeof(num));
build(1,0,n-1);
for (int i=0; i<n; i++) {
scanf("%d",&a[i]);
update(1,a[i]);
sum += query(1,a[i]+1,n-1);
}
int mn = sum;
for (int i=0; i<n; i++) {
sum = sum + n-1-a[i]-a[i];
mn = MIN(mn,sum);
}
printf("%d\n",mn);
}
return 0;
}
本文介绍了一种算法,用于解决给定序列通过不同轮转方式得到的所有序列中逆序对数量最小的问题。采用树状数组优化逆序对的计算过程。
2万+

被折叠的 条评论
为什么被折叠?



