hdu 2138 How many prime numbers (Miller Rabbin大质数判定)

本文介绍了一个算法问题,即如何从给定的一系列正整数中找出素数的数量,并采用Miller-Rabin素性测试算法进行高效判断。通过案例输入输出样例展示了算法的应用效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

How many prime numbers

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 18144    Accepted Submission(s): 6180


Problem Description
  Give you a lot of positive integers, just to find out how many prime numbers there are.
 

Input
  There are a lot of cases. In each case, there is an integer N representing the number of integers to find. Each integer won’t exceed 32-bit signed integer, and each of them won’t be less than 2.
 

Output
  For each case, print the number of prime numbers you have found out.
 

Sample Input
  
3 2 3 4
 

Sample Output
  
2
 

Author
wangye
 

Source
 

Recommend
威士忌   |   We have carefully selected several similar problems for you:   2136  1431  2132  2139  2012 


题解:Miller Rabbin大质数判定

控制一下尝试的次数,此题容易TLE

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define LL long long
using namespace std;
int n;
LL quickpow(LL num,LL x,LL p)
{
	LL base=num%p; LL ans=1;
	while (x) {
		if (x&1) ans=ans*base%p;
		x>>=1;
		base=base*base%p;
	}
	return ans; 
}
bool miller_rabbin(LL n)
{
	if (n==2) return true;
	if (n<2||!(n&1)) return false;
	LL t=0;
	LL a,x,y,u=n-1;
	while (!(u&1)) t++,u>>=1;
	for (int i=0;i<=100;i++) {
		a=rand()*rand()%(n-1)+1;
		x=quickpow(a,u,n);
		for (int j=0;j<t;j++) {
			y=x*x%n;
			if (y==1&&x!=1&&x!=n-1) return false;
			x=y;
		}
		if (x!=1) return false;
	} 
	return true;
}
int main()
{
	freopen("a.in","r",stdin);
	freopen("my.out","w",stdout);
	while (scanf("%d",&n)!=EOF){
	    int cnt=0;
		for (int i=1;i<=n;i++) {
			int x; scanf("%d",&x);
			cnt+=miller_rabbin((LL)x);
		} 
		printf("%d\n",cnt);
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值