openjudge charm bracelet

本文探讨了在给定重量限制和魅力值权重的情况下,如何选择最佳魅力手链组合的问题。通过使用01背包算法,实现最大化魅力值的计算,解决了在有限资源条件下优化选择的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7113:Charm Bracelet

总时间限制: 
1000ms 
内存限制: 
65536kB
描述

Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N(1 ≤ N≤ 3,402) available charms. Each charm iin the supplied list has a weight Wi(1 ≤ Wi≤ 400), a 'desirability' factor Di(1 ≤ Di≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M(1 ≤ M≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.


输入
Line 1: Two space-separated integers: N and M
Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: W i and D i
输出
Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints
样例输入
4 6
1 4
2 6
3 12
2 7
样例输出
23

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,m,i,j;
int f[12888],w[3420],v[3420];
int main()
{
scanf("%d%d",&n,&m);
for (i=1;i<=n;i++)
 scanf("%d%d",&w[i],&v[i]);
memset(f,0,sizeof(f));
    for (i=1;i<=n;i++)
 for (j=m;j>=w[i];j--)
   f[j]=max(f[j],f[j-w[i]]+v[i]);
    cout<<f[m];
return 0; 
}
//此题为标准的01背包
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值