[Paper note] Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles

本文介绍了一种新的损失函数——耦合簇损失,在车辆再识别任务中的应用。该方法解决了传统三元组损失存在的问题,并提出一种能够使同一身份样本聚集在共同中心点周围的损失函数。此外,还介绍了新提出的VehicleID数据集,以及在CompCars等数据集上的实验结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Highlight

  • VGG, propose coupled clusters loss
  • Multi-loss (car model, car ID)
  • New dataset VehicleID

Model

  • Problem with triplet loss
    • When margin constraint already satisfied, the training sample makes no contribution to gradient decent.
    • Ancor point sensitive (negative point is pushed away according to the selected ancor and positive point).
  • Coupled clusters loss
    • Samples belong to the same identity should locate around a common center point.
    • Center point
      • cp=1NpNpif(xpi)
    • Coupled cluster loss
      • L(W,Xp,Xn)=Npi12max{0,f(xpi)cp22+αf(xn)cp22}
      • xn is the nearest negative sample
  • Two kinds of differences: same vehicle model & same identity
    • model structure

Dataset

  • VehicleID (newly proposed)
Image numberTrainingTestingAll
w\ model label475584263890196
w\o model label6754068947136487
All110178111585226683
  • CompCars
  • Tasks
    • Vehicle model verification
    • Vehicle retrieval
    • Vehicle re-id
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值