Highlight
- VGG, propose coupled clusters loss
- Multi-loss (car model, car ID)
- New dataset VehicleID
Model
- Problem with triplet loss
- When margin constraint already satisfied, the training sample makes no contribution to gradient decent.
- Ancor point sensitive (negative point is pushed away according to the selected ancor and positive point).
- Coupled clusters loss
- Samples belong to the same identity should locate around a common center point.
- Center point
- cp=1Np∑Npif(xpi)
- Coupled cluster loss
- L(W,Xp,Xn)=∑Npi12max{0,∥f(xpi)−cp∥22+α−∥f(xn∗)−cp∥22}
- xn∗ is the nearest negative sample
- Two kinds of differences: same vehicle model & same identity
Dataset
- VehicleID (newly proposed)
| Image number | Training | Testing | All |
|---|---|---|---|
| w\ model label | 47558 | 42638 | 90196 |
| w\o model label | 67540 | 68947 | 136487 |
| All | 110178 | 111585 | 226683 |
本文介绍了一种新的损失函数——耦合簇损失,在车辆再识别任务中的应用。该方法解决了传统三元组损失存在的问题,并提出一种能够使同一身份样本聚集在共同中心点周围的损失函数。此外,还介绍了新提出的VehicleID数据集,以及在CompCars等数据集上的实验结果。
995

被折叠的 条评论
为什么被折叠?



