[Paper note] Xception: Deep Learning with Depthwise Separable Convolutions

本文探讨了Inception模块如何通过独立查看跨通道相关性和空间相关性来提高卷积过程的效率,并介绍了Xception模块的设计理念,即完全解耦跨通道操作与空间操作。实验表明,Xception模块比Inception V3收敛更快且准确率更高。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Intuition

  • Inception series
  • Conv maps cross-channel correlation and spatial correlation at the same time.
  • Inception module makes this process easier and more efficient by explicitly factoring it into a series of operations that would independently look at cross-channel correlations and at spatial correlations.
  • 1x1 Conv -> cross-channel correlation; 3x3 & 5x5 Conv -> spatial correlation.
    Inception
  • An extreme version of this separation is to entirely decouple the cross-channel and spatial operations, naming Xception.

Xception

  • Xception module:
    Xception
  • First use 1x1 Conv
  • Conduct depthwise separable convolution (DSC): each feature-map have different 3x3 Conv, then concatenate the result of each Conv.
  • Advantages: Efficient parameter usage
  • Whole model
    Model

Experiment

  • Dataset: JET (internal Google dataset), ImageNet, FastEval14k.
  • Result
    • Xception converges faster than Inception V3 and gets higher accuracy.
    • 21.0% top-1, 5.5% top-5 error on ImageNet.
    • Better with residual connection.
    • Worse with non-linear in between the 1x1 and DSC.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值